980
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Antibody engineering and its therapeutic applications

ORCID Icon & ORCID Icon
Pages 156-183 | Received 08 Jun 2021, Accepted 20 Jul 2021, Published online: 06 Aug 2021

References

  • Kaunitz JD. Development of monoclonal antibodies: the dawn of mAb rule. Dig Dis Sci. 2017;62(4):831–832. doi:10.1007/s10620-017-4478-1.
  • Gavilondo JV, Larrick JW. Antibody engineering at the millennium. Biotechniques. 2000;29(1):128–145. doi:10.2144/00291ov01.
  • Saeed AFUH, Wang R, Ling S, et al. Antibody engineering for pursuing a healthier future. Front Microbiol. 2017;8:495. doi:10.3389/fmicb.2017.00495.
  • Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020; 85:106639. doi:10.1016/j.intimp.2020.106639.
  • Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. doi:10.1038/nrd3229.
  • Chiu ML, Goulet DR, Teplyakov A, et al. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019;8(4):55. doi:10.3390/antib8040055.
  • Schroeder HW, Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S41–S52. doi:10.1016/j.jaci.2009.09.046.
  • Feige MJ, Gräwert MA, Marcinowski M, et al. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A. 2014;111(22):8155–8160. doi:10.1073/pnas.1321502111.
  • Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22. doi:10.1007/s00253-007-1142-2.
  • Maynard J, Georgiou G. Antibody engineering. Annu Rev Biomed Eng. 2000;2(1):339–376. doi:10.1146/annurev.bioeng.2.1.339.
  • Orlandi R, Güssow DH, Jones PT, et al. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989;86(10):3833–3837. doi:10.1073/pnas.86.10.3833.
  • Loo L, Robinson MK, Adams GP. Antibody engineering principles and applications. Cancer J. 2008;14(3):149–153. doi:10.1097/PPO.0b013e318173a5d5.
  • Huse WD, Sastry L, Iverson SA, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246(4935):1275–1281. doi:10.1126/science.2531466.
  • Ward ES, Güssow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989;341(6242):544–546. doi:10.1038/341544a0.
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005;23(9):1105–1116. doi:10.1038/nbt1126.
  • Chames P, Van Regenmortel M, Weiss E, et al. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–233. doi:10.1111/j.1476-5381.2009.00190.x.
  • Kulshreshtha P, Bhatnagar R. Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol. 2011;48(15–16):1958–1965. doi:10.1016/j.molimm.2011.05.024.
  • Almagro JC, Fransson J. Humanization of antibodies. Front Biosci. 2008;13:1619–1633. doi:10.2741/2786.
  • Wu H, Nie Y, Huse WD, et al. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J Mol Biol. 1999;294(1):151–162. doi:10.1006/jmbi.1999.3141.
  • Lee E-C, Liang Q, Ali H, et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol. 2014;32(4) :356–363. doi:10.1038/nbt.2825.
  • Lo K-M, Leger O, Hock B. Antibody engineering. Antibodies Infect Dis. 2015;319–343.
  • Ma B, Osborn M. Transgenic animals for the generation of human antibodies. In: Rüker F, Wozniak-Knopp G., eds. Introduction to Antibody Engineering. Cham: Springer; 2021:97–127.
  • Brewis N. Improvement of key characteristics of antibodies. In: Rüker F, Wozniak-Knopp G., eds. Introduction to Antibody Engineering. Cham: Springer; 2021:303–317.
  • Zhou Q, Qiu H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci. 2019;108(4):1366–1377. doi:10.1016/j.xphs.2018.11.029.
  • Bessa J, Boeckle S, Beck H, et al. The immunogenicity of antibody aggregates in a novel transgenic mouse model. Pharm Res. 2015;32(7):2344–2359. doi:10.1007/s11095-015-1627-0.
  • Jones TD, Crompton LJ, Carr FJ, et al. Deimmunization of monoclonal antibodies. In: Dimitrov A., ed. Therapeutic Antibodies. Humana Press; 2009:405–423.
  • Cai HH. Therapeutic Monoclonal Antibodies Approved by FDA in 2020. 2021.
  • Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev Drug Discov. 2012;11(1):19–20. doi:10.1038/nrd3629.
  • Khongorzul P, Ling CJ, Khan FU, et al. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. doi:10.1158/1541-7786.MCR-19-0582.
  • Dickgiesser S, Rieker M, Rasche N. Antibody–drug conjugates. In: Rüker F, Wozniak-Knopp G, eds. Introduction to Antibody Engineering. Cham: Springer; 2021:189–214.
  • Powles T, Rosenberg JE, Sonpavde GP, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125–1135. doi:10.1056/NEJMoa2035807.
  • Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov. 2018;17(3):197–223. doi:10.1038/nrd.2017.227.
  • Ridwansyah H, Kartamihardja AHS, Bashari MH, et al. The potency of radiolabelled monoclonal antibody anti-CD20 as a targeted therapy for B-cell non-Hodgkin lymphoma: a review. Syst Rev Pharm. 2021;12(1):935–947.
  • Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77(14):1603–1610. doi:10.1007/s40265-017-0802-5.
  • Hamadani M, Radford J, Carlo-Stella C, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma. Blood J Am Soc Hematol. 2021;137(19):2634–2645. doi:10.1182/blood.2020007512.
  • Nobre CF, Newman MJ, DeLisa A, et al. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: a review of clinical considerations. Cancer Chemother Pharmacol. 2019;84(2):255–263. doi:10.1007/s00280-019-03875-6.
  • Plosker GL, Keam SJ. Trastuzumab: a review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Drugs. 2006;66(4):449–475. doi:10.2165/00003495-200666040-00005.
  • Lu R-M, Hwang Y-C, Liu I-J, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. doi:10.1186/s12929-019-0592-z.
  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10(5):301–316. doi:10.1038/nri2761.
  • Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8(7):1177–1194. doi:10.1080/19420862.2016.1212149.
  • Frampton JE, Wagstaff AJ. Alemtuzumab. Alemtuzumab. Drugs. 2003;63(12):1229–1243. doi:10.2165/00003495-200363120-00003.
  • Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–1499. doi:10.1056/NEJMoa1501031.
  • Neijssen J, Cardoso RMF, Chevalier KM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 2021;296:100641. doi:10.1016/j.jbc.2021.100641.
  • Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–2301. doi:10.1056/NEJMoa1716948.
  • Kim ES. Avelumab: first global approval. Drugs. 2017;77(8):929–937. doi:10.1007/s40265-017-0749-6.
  • Chapman TM, Keating GM. Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs. 2003;63(24):2803–2835. doi:10.2165/00003495-200363240-00009.
  • Lamore R, Parmar S, Patel K, et al. Belimumab (benlysta): a breakthrough therapy for systemic lupus erythematosus. P T. 2012;37(4):212–226.
  • Laviolette M, Gossage DL, Gauvreau G, et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086–1096. e5. doi:10.1016/j.jaci.2013.05.020.
  • Barber EL, Zsiros E, Lurain JR, et al. The combination of intravenous bevacizumab and metronomic oral cyclophosphamide is an effective regimen for platinum-resistant recurrent ovarian cancer. J Gynecol Oncol. 2013;24(3):258–264. doi:10.3802/jgo.2013.24.3.258.
  • Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. Obstetrical Gynecol Surv. 2014;69(7):402–404. doi:10.1097/01.ogx.0000452705.82050.e4.
  • Johnson S, Gerding DN. Bezlotoxumab. Clin Infect Dis. 2019;68(4):699–704. doi:10.1093/cid/ciy577.
  • Benedetti F, Stracke F, Stadlmayr G, et al. Bispecific antibodies with Fab-arms featuring exchanged antigen-binding constant domains. Biochem Biophys Rep. 2021;26:100959. doi:10.1016/j.bbrep.2021.100959.
  • Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–2306. doi:10.1056/NEJMoa1315231.
  • Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2019;11(2):219–238. doi:10.1080/19420862.2018.1556465.
  • Ligi A. Novartis receives FDA approval for Beovu®, offering wet AMD patients vision gains and greater fluid reductions vs aflibercept. 2020.
  • Dhimolea E. Canakinumab. MAbs. 2010;2(1):3–13. doi:10.4161/mabs.2.1.10328.
  • Maher J, Adami AA. Antitumor immunity: easy as 1, 2, 3 with monoclonal bispecific trifunctional antibodies?Cancer Res. 2013;73(18):5613–5617. doi:10.1158/0008-5472.CAN-13-1852.
  • Elliott W, Chan J. Casirivimab + Imdevimab injection. Internal Medicine Alert. 2020;42(24).
  • Goel N, Stephens S. Certolizumab pegol. MAbs. 2010;2(2):137–147. doi:10.4161/mabs.2.2.11271.
  • Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ. Antibody phage display libraries: contributions to oncology. Int J Mol Sci. 2012;13(5):5420–5440. doi:10.3390/ijms13055420.
  • Mottershead M, Neuberger J. Daclizumab. Expert Opin Biol Ther. 2007;7(10):1583–1596. doi:10.1517/14712598.7.10.1583.
  • Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, Minnema MC, Lassen U, Krejcik J, Palumbo A, van de Donk NW. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–1219.
  • Moen MD, Keam SJ. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28(1):63–82. doi:10.2165/11203300-000000000-00000.
  • Hoy SM. Dinutuximab: a review in high-risk neuroblastoma. Target Oncol. 2016;11(2):247–253. doi:10.1007/s11523-016-0420-2.
  • Oaknin A, Tinker AV, Gilbert L, et al. Clinical activity and safety of the Anti-Programmed Death 1 Monoclonal Antibody Dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: a nonrandomized phase 1 clinical trial. JAMA Oncol. 2020;6(11):1766–1772. doi:10.1001/jamaoncol.2020.4515.
  • D’Ippolito D, Pisano M. Dupilumab (dupixent): an interleukin-4 receptor antagonist for atopic dermatitis. Pharm Ther. 2018;43(9):532.
  • Alsharedi M, Srivastava R, Elmsherghi N. Durvalumab for the treatment of urothelial carcinoma. Drugs Today (Barc)). 2017;53(12):647–652. doi:10.1358/dot.2017.53.12.2733054.
  • Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9(1):86–120. doi:10.1007/s13238-017-0457-8.
  • McKeage K. Eculizumab: a review of its use in paroxysmal nocturnal haemoglobinuria. Drugs. 2011;71(17):2327–2345. doi:10.2165/11208300-000000000-00000.
  • Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–631. doi:10.1056/NEJMoa1505654.
  • Franchini M, Marano G, Pati I, et al. Emicizumab for the treatment of haemophilia A: a narrative review. Blood Transfus. 2019;17(3):223–228. doi:10.2450/2019.0026-19.
  • Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–1722. doi:10.1056/NEJMoa1615664.
  • Mazumdar S, Greenwald. Golimumab. In D. Golimumab. MAbs. 2009;1(5):422–431. doi:10.4161/mabs.1.5.9286.
  • Markham A. Guselkumab: first global approval. Drugs. 2017;77(13):1487–1492. doi:10.1007/s40265-017-0800-7.
  • Beccari MV, Mogle BT, Sidman EF, et al. Ibalizumab, a novel monoclonal antibody for the management of multidrug-resistant HIV-1 infection. Antimicrob Agents Chemother. 2019;63(6). doi:10.1128/AAC.00110-19.
  • Rizza SA, Bhatia R, Zeuli J, et al. Ibalizumab for the treatment of multidrug-resistant HIV-1 infection. Drugs Today (Barc)). 2019; 55(1):25–34. doi:10.1358/dot.2019.55.1.2895651.
  • Pollack CV, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–520. doi:10.1056/NEJMoa1502000.
  • De Goeij BE, Janmaat ML, Andringa G, et al. Hexabody-CD38, a Novel CD38 Antibody with a Hexamerization Enhancing Mutation, Demonstrates Enhanced Complement-Dependent Cytotoxicity and Shows Potent anti-Tumor Activity in Preclinical Models of Hematological Malignancies. Washington, DC: American Society of Hematology; 2019.
  • Melsheimer R, Geldhof A, Apaolaza I, et al. Remicade®(infliximab): 20 years of contributions to science and medicine. Biologics targets Ther. 2019;13:139.
  • Sondak VK, Smalley KSM, Kudchadkar R, et al. Ipilimumab. Nat Rev Drug Discov. 2011;10(6):411–412. doi:10.1038/nrd3463.
  • Krupashankar DS, Dogra S, Kura M, et al. Efficacy and safety of itolizumab, a novel anti-CD6 monoclonal antibody, in patients with moderate to severe chronic plaque psoriasis: results of a double-blind, randomized, placebo-controlled, phase-III study. J Am Acad Dermatol. 2014;71(3):484–492. doi:10.1016/j.jaad.2014.01.897.
  • Farahnik B, Beroukhim K, Zhu TH, et al. Ixekizumab for the treatment of psoriasis: a review of phase III trials. Dermatol Ther (Heidelb)). 2016;6(1):25–37. doi:10.1007/s13555-016-0102-0.
  • Syed YY. Lanadelumab: first global approval. Drugs. 2018;78(15):1633–1637. doi:10.1007/s40265-018-0987-2.
  • Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–1207. doi:10.1056/NEJMoa1403290.
  • Moore DC, Elmes JB, Shibu PA, et al. Mogamulizumab: an anti-CC chemokine receptor 4 antibody for T-cell lymphomas. Ann Pharmacother. 2020;54(4):371–379. doi:10.1177/1060028019884863.
  • Baker DE. Natalizumab: overview of its pharmacology and safety. Rev Gastroenterol Disord. 2007;7(1):38–46.
  • Díaz-Serrano A, Sánchez-Torre A, Paz-Ares L. Necitumumab for the treatment of advanced non-small-cell lung cancer. Future Oncol. 2019;15(7):705–716. doi:10.2217/fon-2018-0594.
  • Sun L-M, Liu Y-C, Li W, et al. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression. Eur Rev Med Pharmacol Sci. 2017;21(6):1198–1205.
  • Greig SL. Obiltoxaximab: first global approval. Drugs. 2016;76(7):823–830. doi:10.1007/s40265-016-0577-0.
  • Goede V, Fischer K, Engelke A, et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia. 2015;29(7):1602–1604. doi:10.1038/leu.2015.14.
  • Shirley M. Olaratumab: first global approval. Drugs. 2017;77(1):107–112. doi:10.1007/s40265-016-0680-2.
  • Fenton C, Scott LJ, Plosker GL. Palivizumab. Pediatric Drugs. 2004;6(3):177–197. doi:10.2165/00148581-200406030-00004.
  • Khoja L, Butler MO, Kang SP, et al. Pembrolizumab. J Immunother Cancer. 2015;3(1):1–13. doi:10.1186/s40425-015-0078-9.
  • Keating GM. Pertuzumab: in the first-line treatment of HER2-positive metastatic breast cancer. Drugs. 2012;72(3):353–360. doi:10.2165/11209000-000000000-00000.
  • Deeks ED. Polatuzumab vedotin: first global approval. Drugs. 2019;79(13):1467–1475. doi:10.1007/s40265-019-01175-0.
  • Arrieta O, Zatarain-Barrón ZL, Cardona AF, et al. Ramucirumab in the treatment of non-small cell lung cancer. Expert Opin Drug Saf. 2017;16(5):637–644. doi:10.1080/14740338.2017.1313226.
  • Blick SK, Keating GM, Wagstaff AJ. Ranibizumab. Ranibizumab. Drugs. 2007;67(8):1199–1206. doi:10.2165/00003495-200767080-00007.
  • Migone T-S, Subramanian GM, Zhong J, et al. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med. 2009;361(2):135–144. doi:10.1056/NEJMoa0810603.
  • Castro M, Mathur S, Hargreave F, Res-5-0010 Study Group, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132. doi:10.1164/rccm.201103-0396OC.
  • Banaszczyk K. Risankizumab in the treatment of psoriasis - literature review. Reumatologia. 2019;57(3):158–162. doi:10.5114/reum.2019.86426.
  • Maloney DG, Grillo-López AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood J Am Soc Hematol. 1997;90(6):2188–2195. doi:10.1182/blood.V90.6.2188.2188_2188_2195.
  • Du P, Geng J, Wang F, et al. Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. Int J Med Sci. 2021;18(6):1356–1362. doi:10.7150/ijms.53564.
  • Frieder J, Kivelevitch D, Menter A. Secukinumab: a review of the anti-IL-17A biologic for the treatment of psoriasis. Ther Adv Chronic Dis. 2018;9(1):5–21. doi:10.1177/2040622317738910.
  • van Rhee F, Fayad L, Voorhees P, et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J Clin Oncol. 2010;28(23):3701–3708. doi:10.1200/JCO.2009.27.2377.
  • Mease PJ, Deodhar A, Van der Heijde D, et al. Efficacy and safety of tildrakizumab in patients with active psoriatic arthritis: results of a randomised, double-blind, placebo-controlled, multiple-dose, 52-week phase IIb study. Ann Rheum Dis. 2021;80(Suppl 1):314.2–315. doi:10.1136/annrheumdis-2021-eular.2603.
  • De Rossi N, Scarpazza C, Filippini C, et al. Early use of low dose tocilizumab in patients with COVID-19: a retrospective cohort study with a complete follow-up. EClinicalMedicine. 2020;25:100459.
  • Zhao M, Lu J, Tang Y, et al. Tocilizumab for treating COVID-19: a systemic review and meta-analysis of retrospective studies. Eur J Clin Pharmacol. 2021;77(3):311–319. doi:10.1007/s00228-020-03017-5.
  • Adedokun OJ, Xu Z, Gasink C, et al. Pharmacokinetics and exposure response relationships of ustekinumab in patients with Crohn’s disease. Gastroenterology. 2018;154(6):1660–1671. doi:10.1053/j.gastro.2018.01.043.
  • Singh H, Grewal N, Arora E, et al. Vedolizumab: a novel anti-integrin drug for treatment of inflammatory bowel disease. J Nat Sci Biol Med. 2016;7(1):4–9. doi:10.4103/0976-9668.175016.
  • Kumar R, Parray HA, Shrivastava T, et al. Phage display antibody libraries: a robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol. 2019;135:907–918. doi:10.1016/j.ijbiomac.2019.06.006.
  • Barbas CF, III, Burton DR. Selection and evolution of high-affinity human anti-viral antibodies. Trends Biotechnol. 1996;14(7):230–234. doi:10.1016/0167-7799(96)10029-9.
  • Persson M, Caothien RH, Burton DR. Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A. 1991;88(6):2432–2436. doi:10.1073/pnas.88.6.2432.
  • Hoogenboom HR, de Bruïne AP, Hufton SE, et al. Antibody phage display technology and its applications. Immunotechnology. 1998;4(1) :1–20. doi:10.1016/S1380-2933(98)00007-4.
  • Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol. 1998;9(1):102–108. doi:10.1016/S0958-1669(98)80092-X.
  • Griffiths AD, Malmqvist M, Marks JD, et al. Human anti-self antibodies with high specificity from phage display libraries. Embo J. 1993;12(2):725–734. doi:10.1002/j.1460-2075.1993.tb05706.x.
  • Benhar I. Design of synthetic antibody libraries. Expert Opin Biol Ther. 2007;7(5):763–779. doi:10.1517/14712598.7.5.763.
  • Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296(1):57–86. doi:10.1006/jmbi.1999.3444.
  • de Wildt RM, Mundy CR, Gorick BD, et al. Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol. 2000;18(9):989–994. doi:10.1038/79494.
  • Løset GÅ, Løbersli I, Kavlie A, et al. Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. J Immunol Methods. 2005;299(1–2):47–62. doi:10.1016/j.jim.2005.01.014.
  • Pini A, Viti F, Santucci A, et al. Design and use of a phage display library human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273(34):21769–21776. doi:10.1074/jbc.273.34.21769.
  • Hoogenboom HR, Winter G. By-passing immunisation: human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol. 1992;227(2):381–388. doi:10.1016/0022-2836(92)90894-P.
  • Jirholt P, Ohlin M, Borrebaeck CA, et al. Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene. 1998;215(2):471–476. doi:10.1016/S0378-1119(98)00317-5.
  • Barbas CF, Hu D, Dunlop N, et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc Natl Acad Sci U S A. 1994;91(9):3809–3813. doi:10.1073/pnas.91.9.3809.
  • Wark KL, Hudson PJ. Latest technologies for the enhancement of antibody affinity. Adv Drug Deliv Rev. 2006;58(5–6) :657–670. doi:10.1016/j.addr.2006.01.025.
  • Harvey BR, Georgiou G, Hayhurst A, et al. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A. 2004;101(25):9193–9198. doi:10.1073/pnas.0400187101.
  • Wu H, Pfarr DS, Tang Y, et al. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J Mol Biol. 2005;350(1):126–144. doi:10.1016/j.jmb.2005.04.049.
  • Lamminmäki U, Paupério S, Westerlund-Karlsson A, et al. Expanding the conformational diversity by random insertions to CDRH2 results in improved anti-estradiol antibodies. J Mol Biol. 1999;291(3):589–602. doi:10.1006/jmbi.1999.2981.
  • Gram H, Marconi LA, Barbas CF, et al. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A. 1992;89(8):3576–3580. doi:10.1073/pnas.89.8.3576.
  • Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J Mol Biol. 1992;226(3):889–896. doi:10.1016/0022-2836(92)90639-2.
  • Wells JA. Additivity of mutational effects in proteins. Biochemistry. 1990;29(37):8509–8517. doi:10.1021/bi00489a001.
  • Yang XD, Corvalan JR, Wang P, et al. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol. 1999;66(3):401–410. doi:10.1002/jlb.66.3.401.
  • Ishida I, Tomizuka K, Yoshida H, et al. Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells. 2002;4(1):91–102. doi:10.1089/153623002753632084.
  • Brüggemann M, Osborn MJ, Ma B, et al. Strategies to obtain diverse and specific human monoclonal antibodies from transgenic animals. Transplantation. 2017;101(8):1770–1776. doi:10.1097/TP.0000000000001702.
  • Chen WC, Murawsky CM. Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol. 2018;9:460. doi:10.3389/fimmu.2018.00460.
  • Cameron B, Dabdoubi T, Berthou-Soulié L, et al. Complementary epitopes and favorable developability of monoclonal anti-LAMP1 antibodies generated using two transgenic animal platforms. PLoS One. 2020;15(7):e0235815. doi:10.1371/journal.pone.0235815.
  • Kenanova V, Olafsen T, Crow DM, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti–carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 2005;65(2):622–631.
  • Ghetie V, Popov S, Borvak J, et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol. 1997;15(7):637–640. doi:10.1038/nbt0797-637.
  • Yu X, Chan HTC, Fisher H, et al. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell. 2020;37(6):850–866.e7. doi:10.1016/j.ccell.2020.04.013.
  • Wang L, Hoseini SS, Xu H, et al. Silencing Fc domains in T cell-engaging bispecific antibodies improves T-cell trafficking and antitumor potency. Cancer Immunol Res. 2019;7(12):2013–2024. doi:10.1158/2326-6066.CIR-19-0121.
  • Chao DT, Ma X, Li O, et al. Functional characterization of N297A, a murine surrogate for low-Fc binding anti-human CD3 antibodies. Immunol Invest. 2009;38(1):76–92. doi:10.1080/08820130802608238.
  • Sorkin LS, Otto M, Baldwin WM, et al. Anti-GD(2) with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia . PAIN. 2010;149(1):135–142. doi:10.1016/j.pain.2010.01.024.
  • Idusogie EE, Wong PY, Presta LG, et al. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166(4):2571–2575. doi:10.4049/jimmunol.166.4.2571.
  • Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9) :6591–6604. doi:10.1074/jbc.M009483200.
  • Buchanan A, Revell JD. Novel therapeutic proteins and peptides. In: Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies. Academic Press; 2015:171-197.
  • Halin C, Rondini S, Nilsson F, et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol. 2002;20(3):264–269. doi:10.1038/nbt0302-264.
  • Penichet ML, Morrison SL. Antibody–cytokine fusion proteins for the therapy of cancer. J Immunol Methods. 2001;248(1–2):91–101. doi:10.1016/S0022-1759(00)00345-8.
  • Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997;15(6):542–546. doi:10.1038/nbt0697-542.
  • Assa-Munt N, Jia X, Laakkonen P, et al. Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry. 2001;40(8):2373–2378. doi:10.1021/bi002101f.
  • Li J, Ji J, Holmes LM, et al. Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther. 2004;11(5):363–370. doi:10.1038/sj.cgt.7700707.
  • Brezski RJ, Jordan RE. Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity?MAbs. 2010;2(3):212–220. doi:10.4161/mabs.2.3.11780.
  • Desnoyers LR, Vasiljeva O, Richardson JH, et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med. 2013;5(207):207ra144. doi:10.1126/scitranslmed.3006682.
  • Erster O, Thomas JM, Hamzah J, et al. Site-specific targeting of antibody activity in vivo mediated by disease-associated proteases. J Control Release. 2012;161(3):804–812. doi:10.1016/j.jconrel.2012.05.035.
  • Dall’Acqua WF, Cook KE, Damschroder MM, et al. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol. 2006;177(2):1129–1138. doi:10.4049/jimmunol.177.2.1129.
  • Igawa T, Haraya K, Hattori K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol Rev. 2016;270(1):132–151. doi:10.1111/imr.12392.
  • Choi DK, Bae J, Shin SM, et al. A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells. MAbs. 2014;6(6):1402–1414. doi:10.4161/mabs.36389.
  • Kim J-S, Choi D-K, Shin J-Y, et al. Endosomal acidic pH-induced conformational changes of a cytosol-penetrating antibody mediate endosomal escape. J Control Release. 2016;235:165–175. doi:10.1016/j.jconrel.2016.05.066.
  • Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208. doi:10.2147/DDDT.S151282.
  • Wozniak-Knopp G. Bispecific antibodies. In: Rüker F, Wozniak-Knopp G., eds. Introduction to Antibody Engineering. Cham: Springer; 2021:161–187.
  • Zhukovsky EA, Morse RJ, Maus MV. Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr Opin Immunol. 2016;40:24–35. doi:10.1016/j.coi.2016.02.006.
  • Li J, Zhu Z. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin. 2010;31(9):1198–1207. doi:10.1038/aps.2010.120.
  • Jarasch A, Koll H, Regula JT, et al. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci. 2015;104(6) :1885–1898. doi:10.1002/jps.24430.
  • de Jong RN, Beurskens FJ, Verploegen S, et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol. 2016;14(1):e1002344. doi:10.1371/journal.pbio.1002344.
  • Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol. 2016;38:163–173. doi:10.1016/j.sbi.2016.07.012.
  • Smith SA, Crowe JE.Jr. Use of human hybridoma technology to isolate human monoclonal antibodies. Antibodies Infect Dis. 2015;141–156.
  • Tiller T. Single B cell antibody technologies. N Biotechnol. 2011;28(5) :453–457. doi:10.1016/j.nbt.2011.03.014.
  • Yang X, Xu W, Dukleska S, et al. Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. MAbs. 2013;5(5):787–794. doi:10.4161/mabs.25269.
  • Vlasak J, Ionescu R. Fragmentation of monoclonal antibodies. MAbs. 2011;3(3):253–263. doi:10.4161/mabs.3.3.15608.
  • Kornmann H, Hock B. Engineering therapeutic antibodies for development. In: Rüker F, Wozniak-Knopp G., eds. Introduction to Antibody Engineering. Cham: Springer; 2021: 319–341.
  • Beck A. Biosimilar, biobetter and next generation therapeutic antibodies. MAbs. 2011;3(2):107–110. doi:10.4161/mabs.3.2.14785.
  • Hillman Y, Lustiger D, Wine Y. Antibody-based nanotechnology. Nanotechnology. 2019;30(28) :282001. doi:10.1088/1361-6528/ab12f4.
  • Food F. and D. Adminstration. Coronavirus (COVID-19) Update: fda Revokes Emergency Use Authorization for Chembio Antibody Test. News Release, 2020.
  • Manish M, Verma S, Kandari D, et al. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther. 2020;20(12):1405–1425. doi:10.1080/14712598.2020.1801626.
  • Pardridge WM. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies . Expert Opin Biol Ther. 2016;16(12):1455–1468. doi:10.1080/14712598.2016.1230195.
  • Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discovery. 2021.
  • Chibber P, Haq SA, Ahmed I, et al. Advances in the possible treatment of COVID-19: a review. Eur J PharmacolPharmacol. 2020;883:173372. doi:10.1016/j.ejphar.2020.173372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.