439
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy

, , , , , & show all
Pages 43-70 | Received 21 Jul 2021, Accepted 29 Sep 2021, Published online: 22 Oct 2021

References

Publications of special note have been highlighted as either of interest (*) or considerable interest (**) to readers.

  • WHO. Global Tuberculosis Report 2019. 2019.
  • Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med. 2012;367(10):931–936. doi:10.1056/NEJMra1205429.
  • de Chastellier C. The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology. 2009;214(7):526–542. doi:10.1016/j.imbio.2008.12.005.
  • Forrellad MA, Klepp LI, Gioffré A, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1):3–66. doi:10.4161/viru.22329.
  • Uhlin M, Andersson J, Zumla A, et al. Adjunct Immunotherapies for Tuberculosis. J Infect Dis. 2012;205(suppl 2):S325–S334. doi:10.1093/infdis/jis197.
  • Kumari P, Sikri K, Tyagi JS, et al. The pleiotropic transcriptional response of Mycobacterium tuberculosis to vitamin C is robust and overlaps with the bacterial response to multiple intracellular stresses. Microbiology (Reading). 2015;161(Pt 4):739–753. doi:10.1099/mic.0.000049.
  • Turnbull ER, Drobniewski F. Vitamin D supplementation: a comprehensive review on supplementation for tuberculosis prophylaxis. Expert Rev Respir Med. 2015;9(3):269–275. doi:10.1586/17476348.2015.1042458.
  • Zhan Y, Jiang L. Status of vitamin D, antimicrobial peptide cathelicidin and T helper-associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis. Exp Ther Med. 2015;9(1):11–16. doi:10.3892/etm.2014.2042.
  • Cerni S, Shafer D, To K, et al. Investigating the role of everolimus in mTOR inhibition and autophagy promotion as a potential host-directed therapeutic target in Mycobacterium tuberculosis infection. JCM. 2019;8(2):232. doi:10.3390/jcm8020232.
  • Gupta A, Pant G, Mitra K, et al. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014;11(4):1201–1207. doi:10.1021/mp4006563.
  • Harbut MB, Vilcheze C, Luo X, et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci USA. 2015;112(14):4453–4458. doi:10.1073/pnas.1504022112.
  • Lin K, O’Brien KM, Trujillo C, et al. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog. 2016;12(6):e1005675. doi:10.1371/journal.ppat.1005675.
  • Singh P, Subbian S. Harnessing the mTOR pathway for tuberculosis treatment. Front Microbiol. 2018;9:70. doi:10.3389/fmicb.2018.00070.
  • Subbian S, Koo MS, Tsenova L, et al. Pharmacologic inhibition of host phosphodiesterase-4 improves isoniazid-mediated clearance of Mycobacterium tuberculosis. Front Immunol. 2016;7:238. doi:10.3389/fimmu.2016.00238.
  • Subbian S, Tsenova L, Holloway J, et al. Adjunctive phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine. 2016;4:104–114. doi:10.1016/j.ebiom.2016.01.015.
  • Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011;377(9761):242–250. doi:10.1016/S0140-6736(10)61889-2.
  • Daley P, Jagannathan V, John KR, et al. Adjunctive vitamin D for treatment of active tuberculosis in India: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2015;15(5):528–534. doi:10.1016/S1473-3099(15)70053-8.
  • Tukvadze N, Sanikidze E, Kipiani M, et al. High-dose vitamin D3 in adults with pulmonary tuberculosis: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;102(5):1059–1069. doi:10.3945/ajcn.115.113886.
  • Hasan Z, Salahuddin N, Rao N, et al. Change in serum CXCL10 levels during anti-tuberculosis treatment depends on vitamin D status [Short Communication]. Int J Tuberc Lung Dis. 2014;18(4):466–469. doi:10.5588/ijtld.13.0460.
  • Salahuddin N, Ali F, Hasan Z, et al. Vitamin D accelerates clinical recovery from tuberculosis: results of the SUCCINCT Study [Supplementary Cholecalciferol in recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D supplementation in patients with pulmonary tuberculosis. BMC Infect Dis. 2013;13:22. doi:10.1186/1471-2334-13-22.
  • Ralph AP, Waramori G, Pontororing GJ, et al. L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS One. 2013;8(8):e70032. doi:10.1371/journal.pone.0070032.
  • Mily A, Rekha RS, Kamal SM, et al. Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS One. 2015;10(9):e0138340. doi:10.1371/journal.pone.0138340.
  • Dutta NK, Bruiners N, Zimmerman MD, et al. Adjunctive host-directed therapy with statins improves tuberculosis-related outcomes in mice. J Infect Dis. 2020;221(7):1079–1087. doi:10.1093/infdis/jiz517.
  • Lee MC, Chiang CY, Lee CH, et al. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria. PLoS One. 2018;13(10):e0205807. doi:10.1371/journal.pone.0205807.
  • Ma Y, Pang Y, Shu W, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis. 2018;37(7):1259–1263. doi:10.1007/s10096-018-3242-6.
  • Schleppi V, Fischer G, Neufang O. Simulation of a retrobulbar-frontobasal tumor by the late sequelae of craniocerebral injury. Rofo. 1987;147(2):212–214. doi:10.1055/s-2008-1048625.
  • Skerry C, Pinn ML, Bruiners N, et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother. 2014;69(9):2453–2457. doi:10.1093/jac/dku166.
  • Hossain MM, Norazmi M-N. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection—the double-edged sword? Biomed Res Int. 2013;2013:179174–179118. doi:10.1155/2013/179174.
  • Ehlers S. Immunity to tuberculosis: a delicate balance between protection and pathology. FEMS Immunol Med Microbiol. 1999;23(2):149–158. doi:10.1016/S0928-8244(98)00130-8.
  • Abebe M, Kim L, Rook G, et al. Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clin Dev Immunol. 2011;2011:678570. doi:10.1155/2011/678570.
  • Puri RV, Reddy PV, Tyagi AK. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS One. 2013;8(7):e70514. doi:10.1371/journal.pone.0070514.
  • Bach H, Papavinasasundaram KG, Wong D, et al. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 2008;3(5):316–322. doi:10.1016/j.chom.2008.03.008.
  • Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015;264(1):220–232. doi:10.1111/imr.12268.
  • Bai X, Feldman NE, Chmura K, et al. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages. PLoS One. 2013;8(4):e61925. doi:10.1371/journal.pone.0061925.
  • Bhagyaraj E, Nanduri R, Saini A, et al. Human xenobiotic nuclear receptor PXR augments Mycobacterium tuberculosis survival. J Immunol. 2016;197(1):244–255. doi:10.4049/jimmunol.1600203. [pubmedMismatch] *An important article on modulation of host nuclear receptor by M. tuberculosis.
  • Mahajan S, Dkhar HK, Chandra V, et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J Immunol. 2012;188(11):5593–5603. doi:10.4049/jimmunol.1103038. [pubmedMismatch] **A pioneering article on modulation of host nuclear receptors by M. tuberculosis lipids.
  • Esterhuyse MM, Linhart HG, Kaufmann SHE. Can the battle against tuberculosis gain from epigenetic research? Trends Microbiol. 2012;20(5):220–226. doi:10.1016/j.tim.2012.03.002.
  • Pennini ME, Liu Y, Yang J, et al. CCAAT/enhancer-binding protein beta and delta binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. J Immunol. 2007;179(10):6910–6918. doi:10.4049/jimmunol.179.10.6910. *An important article on modulation of TLR signalling by M. tuberculosis lipoprotein.
  • Pennini ME, Pai RK, Schultz DC, et al. Mycobacterium tuberculosis 19-kDa Lipoprotein Inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol. 2006;176(7):4323–4330. doi:10.4049/jimmunol.176.7.4323. [pubmedMismatch] *An important article on modulation of host epigenetic machinery and TLR by M. tuberculosis.
  • Koh H-J, Kim Y-R, Kim J-S, et al. CD82 hypomethylation is essential for tuberculosis pathogenesis via regulation of RUNX1-Rab5/22. Exp Mol Med. 2018;50(5):1–15. doi:10.1038/s12276-018-0091-4.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi:10.1016/j.cell.2006.02.015.
  • Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol. 2006;24:353–389. doi:10.1146/annurev.immunol.24.021605.090552.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–273, Table of Contents. doi:10.1128/CMR.00046-08.
  • Deretic V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol. 2012;24(1):21–31. doi:10.1016/j.coi.2011.10.006.
  • PrabhuDas MR, Baldwin CL, Bollyky PL, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol. 2017 May 15;198(10):3775–3789. doi:10.4049/jimmunol.1700373.
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi:10.1016/j.cell.2010.01.022.
  • Pai RK, Pennini ME, Tobian AAR, et al. Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect Immun. 2004;72(11):6603–6614. doi:10.1128/IAI.72.11.6603-6614.2004.
  • Pecora ND, Gehring AJ, Canaday DH, et al. Mycobacterium tuberculosis LprA Is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol. 2006;177(1):422–429. doi:10.4049/jimmunol.177.1.422.
  • Richardson ET, Shukla S, Sweet DR, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83(6):2242–2254. doi:10.1128/IAI.00135-15.
  • Pathak SK, Basu S, Basu KK, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol. 2007;8(6):610–618. doi:10.1038/ni1468.
  • Bandyopadhyay U, Chadha A, Gupta P, et al. Suppression of toll-like receptor 2-mediated proinflammatory responses by Mycobacterium tuberculosis protein Rv3529c. J Leukoc Biol. 2017;102(5):1249–1259. doi:10.1189/jlb.4A0217-042R.
  • Shen P, Li Q, Ma J, et al. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis. BMC Microbiol. 2017;17(1):185. doi:10.1186/s12866-017-1095-2.
  • Babu S, Bhat SQ, Kumar NP, et al. Attenuation of toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl Trop Dis. 2009;3(7):e489. doi:10.1371/journal.pntd.0000489.
  • Lang R. Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front Immunol. 2013;4:5. doi:10.3389/fimmu.2013.00005.
  • Yarkoni E, Rapp HJ. Granuloma formation in lungs of mice after intravenous administration of emulsified trehalose-6,6’-dimycolate (cord factor): reaction intensity depends on size distribution of the oil droplets. Infect Immun. 1977;18(2):552–554. doi:10.1128/iai.18.2.552-554.1977.
  • Ishikawa E, Ishikawa T, Morita YS, et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med. 2009;206(13):2879–2888. doi:10.1084/jem.20091750.
  • Marakalala MJ, Guler R, Matika L, et al. The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes Infect. 2011;13(2):198–201. doi:10.1016/j.micinf.2010.10.013.
  • Kang PB, Azad AK, Torrelles JB, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med. 2005;202(7):987–999. doi:10.1084/jem.20051239.
  • Geijtenbeek TBH, van Vliet SJ, Koppel EA, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;197(1):7–17. doi:10.1084/jem.20021229.
  • Gringhuis SI, den Dunnen J, Litjens M, et al. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 2009;10(10):1081–1088. doi:10.1038/ni.1778.
  • Ferguson JS, Weis JJ, Martin JL, et al. Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun. 2004;72(5):2564–2573. doi:10.1128/IAI.72.5.2564-2573.2004.
  • Schlesinger LS, Bellinger-Kawahara CG, Payne NR, et al. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol (Baltimore, MD: 1950). 1990;144:2771–2780.
  • Zimmerli S, Edwards S, Ernst JD. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol. 1996;15(6):760–770. doi:10.1165/ajrcmb.15.6.8969271.
  • Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108(6):785–791. doi:10.1172/JCI14006.
  • Voll RE, Herrmann M, Roth EA, et al. Immunosuppressive effects of apoptotic cells. Nature. 1997;390(6658):350–351. doi:10.1038/37022.
  • Dodd CE, Pyle CJ, Glowinski R, et al. CD36-mediated uptake of surfactant lipids by human macrophages promotes intracellular growth of Mycobacterium tuberculosis. J Immunol. 2016;197(12):4727–4735. doi:10.4049/jimmunol.1600856.
  • Hawkes M, Li X, Crockett M, et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis. 2010;10(1):299. doi:10.1186/1471-2334-10-299.
  • Khounlotham M, Subbian S, Smith IIR, et al. Mycobacterium tuberculosis interferes with the response to infection by inducing the host EphA2 receptor. J Infect Dis. 2009;199(12):1797–1806. doi:10.1086/599096.
  • Singh V, Jamwal S, Jain R, et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe. 2012;12(5):669–681. doi:10.1016/j.chom.2012.09.012.
  • Downing JF, Pasula R, Wright JR, et al. Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci USA. 1995;92(11):4848–4852. doi:10.1073/pnas.92.11.4848.
  • Gaynor CD, McCormack FX, Voelker DR, et al. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol (Baltimore, MD: 1995). 1950;155:5343–5351.
  • Pison U, Max M, Neuendank A, et al. Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest. 1994;24(9):586–599. doi:10.1111/j.1365-2362.1994.tb01110.x.
  • Pasula R, Wright JR, Kachel DL, et al. Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. J Clin Invest. 1999;103(4):483–490. doi:10.1172/JCI2991.
  • Wong D, Bach H, Sun J, et al. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA. 2011;108(48):19371–19376. doi:10.1073/pnas.1109201108.
  • Bao Z, Chen R, Zhang P, et al. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages. Int J Mol Med. 2016;38(3):823–833. doi:10.3892/ijmm.2016.2675.
  • Fratti RA, Chua J, Vergne I, et al. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci USA. 2003;100(9):5437–5442. doi:10.1073/pnas.0737613100.
  • Saleh MT, Belisle JT. Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol. 2000;182(23):6850–6853. doi:10.1128/JB.182.23.6850-6853.2000.
  • Vieira OV, Botelho RJ, Rameh L, et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001;155(1):19–25. doi:10.1083/jcb.200107069.
  • Vergne I, Chua J, Lee HH, et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2005;102(11):4033–4038. doi:10.1073/pnas.0409716102.
  • Misura KMS, Bock JB, Gonzalez LC, et al. Three-dimensional structure of the amino-terminal domain of syntaxin 6, a SNAP-25 C homolog. Proc Natl Acad Sci USA. 2002;99(14):9184–9189. doi:10.1073/pnas.132274599.
  • Parlati F, Varlamov O, Paz K, et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA. 2002;99(8):5424–5429. doi:10.1073/pnas.082100899.
  • Sun J, Wang X, Lau A, et al. Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine raw 264.7 macrophages. PLoS One. 2010;5(1):e8769. doi:10.1371/journal.pone.0008769.
  • Rajni ML. Guanosine triphosphatases as novel therapeutic targets in tuberculosis. Int J Infect Dis. 2010;14:e682–e687. doi:10.1016/j.ijid.2009.11.016.
  • Sun J, Singh V, Lau A, et al. Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity. PLoS Pathog. 2013;9(7):e1003499. doi:10.1371/journal.ppat.1003499.
  • Malik ZA, Thompson CR, Hashimi S, et al. Cutting Edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol. 2003;170(6):2811–2815. doi:10.4049/jimmunol.170.6.2811.
  • Vergne I, Chua J, Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med. 2003;198(4):653–659. doi:10.1084/jem.20030527.
  • Mehra A, Zahra A, Thompson V, et al. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog. 2013;9(10):e1003734. doi:10.1371/journal.ppat.1003734.
  • Fukui Y, de Hostos E, Yumura S, et al. Architectural dynamics of F-actin in eupodia suggests their role in invasive locomotion in Dictyostelium. Exp Cell Res. 1999;249:33–45. doi:10.1006/excr.1999.4445.
  • Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays. 2005;27(6):625–632. doi:10.1002/bies.20235.
  • Uetrecht AC, Bear JE. Coronins: the return of the crown. Trends Cell Biol. 2006;16(8):421–426. doi:10.1016/j.tcb.2006.06.002.
  • Ferrari G, Langen H, Naito M, et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell. 1999;97(4):435–447. doi:10.1016/S0092-8674(00)80754-0.
  • Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 2000;288(5471):1647–1650. doi:10.1126/science.288.5471.1647.
  • Jayachandran R, Sundaramurthy V, Combaluzier B, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell. 2007;130(1):37–50. doi:10.1016/j.cell.2007.04.043.
  • BoseDasgupta S, Pieters J. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett. 2014;588(21):3898–3905. doi:10.1016/j.febslet.2014.08.036.
  • Trimble WS, Grinstein S. TB or not TB: calcium regulation in mycobacterial survival. Cell. 2007;130(1):12–14. doi:10.1016/j.cell.2007.06.039.
  • Seto S, Tsujimura K, Koide Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol. 2012;14(5):710–727. doi:10.1111/j.1462-5822.2012.01754.x.
  • Deghmane A-E, Soualhine H, Bach H, et al. Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J Cell Sci. 2007;120(Pt 16):2796–2806. doi:10.1242/jcs.006221.
  • Mann FM, VanderVen BC, Peters RJ. Magnesium depletion triggers production of an immune modulating diterpenoid in Mycobacterium tuberculosis. Mol Microbiol. 2011;79(6):1594–1601. doi:10.1111/j.1365-2958.2011.07545.x.
  • Romagnoli A, Etna MP, Giacomini E, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012;8(9):1357–1370. doi:10.4161/auto.20881.
  • Spargo BJ, Crowe LM, Ioneda T, et al. Cord factor (alpha,alpha-trehalose 6,6’-dimycolate) inhibits fusion between phospholipid vesicles. Proc Natl Acad Sci USA. 1991;88(3):737–740. doi:10.1073/pnas.88.3.737.
  • Patin EC, Geffken AC, Willcocks S, et al. Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling. PloS One. 2017;12(4):e0174973. doi:10.1371/journal.pone.0174973.
  • O’Leary S, O’Sullivan MP, Keane J. IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol. 2011;45(1):172–180. doi:10.1165/rcmb.2010-0319OC.
  • Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:1–13. doi:10.4061/2011/207691.
  • Ribet D, Cossart P. Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010;584(13):2748–2758. doi:10.1016/j.febslet.2010.05.012.
  • Bach H, Wong D, Av-Gay Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J. 2009;420(2):155–160. doi:10.1042/BJ20090478.
  • Niesteruk A, Jonker HRA, Richter C, et al. The domain architecture of PtkA, the first tyrosine kinase from Mycobacterium tuberculosis, differs from the conventional kinase architecture. J Biol Chem. 2018;293(30):11823–11836. doi:10.1074/jbc.RA117.000120.
  • Chao JD, Wong D, Av-Gay Y. Microbial protein-tyrosine kinases. J Biol Chem. 2014;289(14):9463–9472. doi:10.1074/jbc.R113.520015.
  • Wang J, Li B-X, Ge P-P, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015;16(3):237–245. doi:10.1038/ni.3096. *Important article on modification of host ubiquitin system by M. tuberculosis.
  • Poirier V, Bach H, Av-Gay Y. Mycobacterium tuberculosis promotes anti-apoptotic activity of the macrophage by PtpA protein-dependent dephosphorylation of host GSK3α. J Biol Chem. 2014;289(42):29376–29385. doi:10.1074/jbc.M114.582502.
  • Zhou B, He Y, Zhang X, et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA. 2010;107(10):4573–4578. doi:10.1073/pnas.0909133107.
  • Ganguly N, Giang PH, Basu SK, et al. Mycobacterium tuberculosis 6-kDa Early Secreted Antigenic Target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunol. 2007;8:24. doi:10.1186/1471-2172-8-24.
  • Kim KH, An DR, Song J, et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Natl Acad Sci USA. 2012;109(20):7729–7734. doi:10.1073/pnas.1120251109.
  • Chan MMP, Cheung BKW, Li JCB, et al. A role for glycogen synthase kinase-3 in antagonizing mycobacterial immune evasion by negatively regulating IL-10 induction. J Leukoc Biol. 2009;86(2):283–291. doi:10.1189/jlb.0708442.
  • Bhat RV, Shanley J, Correll MP, et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA. 2000;97(20):11074–11079. doi:10.1073/pnas.190297597.
  • Hestvik ALK, Hmama Z, Av-Gay Y. Kinome analysis of host response to mycobacterial infection: a novel technique in proteomics. Infect Immun. 2003;71(10):5514–5522. doi:10.1128/IAI.71.10.5514-5522.2003.
  • Singh V, Kaur C, Chaudhary VK, et al. M. tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation. Sci Rep. 2015;5:12906. doi:10.1038/srep12906.
  • Sharma B, Upadhyay R, Dua B, et al. Mycobacterium tuberculosis secretory proteins downregulate T cell activation by interfering with proximal and downstream T cell signalling events. BMC Immunol. 2015;16:67. doi:10.1186/s12865-015-0128-6.
  • Li J, Chai Q-Y, Zhang Y, et al. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. J Immunol. 2015;194(8):3756–3767. doi:10.4049/jimmunol.1402679.
  • Huang D, Bao L. Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J Microbiol Immunol Infect. 2016;49(6):859–865. doi:10.1016/j.jmii.2014.11.008.
  • Maiti D, Bhattacharyya A, Basu J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating bad through a phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2001;276(1):329–333. doi:10.1074/jbc.M002650200.
  • Schaaf K, Smith SR, Duverger A, et al. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Sci Rep. 2017;7:42101. doi:10.1038/srep42101.
  • Gautam US, Foreman TW, Bucsan AN, et al. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2018;115(1):E62–E71. doi:10.1073/pnas.1711373114.
  • Napier Ruth J, Rafi W, Cheruvu M, et al. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe. 2011;10(5):475–485. doi:10.1016/j.chom.2011.09.010. **A study describing importance of tyrosine kinases as therapeutic targets.
  • Bruns H, Stegelmann F, Fabri M, et al. Abelson tyrosine kinase controls phagosomal acidification required for killing of mycobacterium tuberculosis in human macrophages. J Immunol. 2012;189(8):4069–4078. doi:10.4049/jimmunol.1201538.
  • Wu K, Koo J, Jiang X, et al. Improved control of tuberculosis and activation of macrophages in mice lacking protein kinase R. PloS One. 2012;7(2):e30512. doi:10.1371/journal.pone.0030512.
  • Jayaswal S, Kamal MA, Dua R, et al. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLoS Pathog. 2010;6(4):e1000839. doi:10.1371/journal.ppat.1000839.
  • Palucci I, Matic I, Falasca L, et al. Transglutaminase type 2 plays a key role in the pathogenesis of Mycobacterium tuberculosis infection. J Intern Med. 2018;283(3):303–313. doi:10.1111/joim.12714.
  • Chandra V, Bhagyaraj E, Parkesh R, et al. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc. 2016;91(2):429–451. doi:10.1111/brv.12177.
  • Gupta S, Gupta P. Etiopathogenesis, challenges and remedies associated with female genital tuberculosis: potential role of nuclear receptors. Front Immunol. 2020;11:02161. doi:10.3389/fimmu.2020.02161.
  • Mahajan S, Saini A, Kalra R, et al. Frienemies of infection: a chronic case of host nuclear receptors acting as cohorts or combatants of infection. Crit Rev Microbiol. 2016;42(4):526–534. doi:10.3109/1040841X.2014.970122.
  • Nanduri R, Kalra R, Bhagyaraj E, et al. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy. 2019;15(7):1280–1295. doi:10.1080/15548627.2019.1571717.
  • Bhagyaraj E, Tiwari D, Ahuja N, et al. A human xenobiotic nuclear receptor contributes to nonresponsiveness of Mycobacterium tuberculosis to the antituberculosis drug rifampicin. J Biol Chem. 2018;293(10):3747–3757. doi:10.1074/jbc.M117.818377. **A pioneering article describing the role of nuclear receptor in drug non-responsiveness during M. tuberculosis infection.
  • Dkhar HK, Nanduri R, Mahajan S, et al. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol. 2014;193(1):295–305. doi:10.4049/jimmunol.1400092. [pubmedMismatch] *An interesting article on crosstalk between host nuclear receptor and M. tuberculosis cell wall lipids.
  • Roodgar M, Ross CT, Tarara R, et al. Gene expression and TB pathogenesis in rhesus macaques: TR4, CD40, CD40L, FAS (CD95), and TNF are host genetic markers in peripheral blood mononuclear cells that are associated with severity of TB lesions. Infect Genet Evol. 2015;36:396–409. doi:10.1016/j.meegid.2015.10.010.
  • Rajaram MVS, Brooks MN, Morris JD, et al. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J Immunol. 2010;185(2):929–942. doi:10.4049/jimmunol.1000866.
  • Almeida PE, Silva AR, Maya-Monteiro CM, et al. Mycobacterium bovis Bacillus Calmette-Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor gamma expression and activation: functions in inflammation, lipid metabolism, and pathogenesis. J Immunol. 2009;183(2):1337–1345. doi:10.4049/jimmunol.0900365.
  • Guirado E, Rajaram MV, Chawla A, et al. Deletion of PPARγ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice. Tuberculosis (Edinburgh). 2018;111:170–177. doi:10.1016/j.tube.2018.06.012.
  • Wang J, Wang R, Wang H, et al. Glucocorticoids suppress antimicrobial autophagy and nitric oxide production and facilitate mycobacterial survival in macrophages. Sci Rep. 2017;7(1):982. doi:10.1038/s41598-017-01174-9.
  • Jick SS, Lieberman ES, Rahman MU, et al. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 2006;55(1):19–26. doi:10.1002/art.21705.
  • Lai C-C, Lee M-TG, Lee S-H, et al. Risk of incident active tuberculosis and use of corticosteroids. Int J Tuberc Lung Dis. 2015;19(8):936–942. doi:10.5588/ijtld.15.0031.
  • Li Y-l, Chen B-w, Xu M, et al. A guinea pig model of latent Mycobacterium tuberculosis H37Rv infection. Zhonghua Jie He He Hu Xi Za Zhi. 2010;33(9):684–687.
  • Saini A, Mahajan S, Ahuja N, et al. An accord of nuclear receptor expression in M. tuberculosis infected macrophages and dendritic cells. Sci Rep. 2018;8(1):2296. doi:10.1038/s41598-018-20769-4.
  • Chung Y-t, Pasquinelli V, Jurado JO, et al. Elevated cyclic AMP inhibits Mycobacterium tuberculosis-stimulated T-cell IFN-γ secretion through Type I protein kinase A. J Infect Dis. 2018;217(11):1821–1831. doi:10.1093/infdis/jiy079.
  • Balcewicz-Sablinska MK, Keane J, Kornfeld H, et al. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol (Baltimore, MD: 1950). 1998;161:2636–2641.
  • Harris J, Hope JC, Keane J. Tumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosis. J Infect Dis. 2008;198(12):1842–1850. doi:10.1086/593174.
  • Boussiotis VA, Tsai EY, Yunis EJ, et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest. 2000;105(9):1317–1325. doi:10.1172/JCI9918.
  • DE LA Barrera S, Aleman M, Musella R, et al. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients. Clin Exp Immunol. 2004;138(1):128–138. doi:10.1111/j.1365-2249.2004.02577.x.
  • Cyktor JC, Carruthers B, Kominsky RA, et al. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J Immunol. 2013;190(6):2778–2790. doi:10.4049/jimmunol.1202722.
  • Genoula M, Marín Franco JL, Dupont M, et al. Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation. Front Immunol. 2018;9:459. doi:10.3389/fimmu.2018.00459.
  • Phillips BL, Gautam US, Bucsan AN, et al. LAG-3 potentiates the survival of Mycobacterium tuberculosis in host phagocytes by modulating mitochondrial signaling in an in-vitro granuloma model. PLoS One. 2017;12(9):e0180413. doi:10.1371/journal.pone.0180413.
  • Sharma G, Upadhyay S, Srilalitha M, et al. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucl Acids Res. 2015;43(8):3922–3937. doi:10.1093/nar/gkv261. *A comprehensive study on modulation of host epigenetic machinery by M. tuberculosis protein.
  • Yaseen I, Kaur P, Nandicoori VK, et al. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun. 2015;6:8922. doi:10.1038/ncomms9922.
  • Singh V, Prakhar P, Rajmani RS, et al. Histone methyltransferase SET8 epigenetically reprograms host immune responses to assist mycobacterial survival. J Infect Dis. 2017;216(4):477–488. doi:10.1093/infdis/jix322. **An important article on modulation of host epigenetic machinery upon M. tuberculosis infection.
  • Wang Y, Curry HM, Zwilling BS, et al. Mycobacteria inhibition of IFN-gamma induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J Immunol. 2005;174(9):5687–5694. doi:10.4049/jimmunol.174.9.5687.
  • Chandran A, Antony C, Jose L, et al. Mycobacterium tuberculosis infection induces HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front Cell Infect Microbiol. 2015;5:90. doi:10.3389/fcimb.2015.00090.
  • Moores RC, Brilha S, Schutgens F, et al. Epigenetic regulation of matrix metalloproteinase-1 and -3 expression in Mycobacterium tuberculosis infection. Front Immunol. 2017;8:602. doi:10.3389/fimmu.2017.00602.
  • Zhang J, Zheng L, Zhu D, et al. Polymorphisms in the interleukin 18 receptor 1 gene and tuberculosis susceptibility among Chinese. PLoS One. 2014;9(10):e110734. doi:10.1371/journal.pone.0110734.
  • Malik S, Abel L, Tooker H, et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA. 2005;102(34):12183–12188. doi:10.1073/pnas.0503368102.
  • Bulat-Kardum LJ, Etokebe GE, Lederer P, et al. Genetic polymorphisms in the toll-like receptor 10, interleukin (IL)17A and IL17F genes differently affect the risk for tuberculosis in croatian population. Scand J Immunol. 2015;82(1):63–69. doi:10.1111/sji.12300.
  • Toyo-Oka L, Mahasirimongkol S, Yanai H, et al. Strain-based HLA association analysis identified HLA-DRB1*09:01 associated with modern strain tuberculosis. HLA. 2017;90(3):149–156. doi:10.1111/tan.13070.
  • Remus N, El Baghdadi J, Fieschi C, et al. Association of IL12RB1 polymorphisms with pulmonary tuberculosis in adults in Morocco. J Infect Dis. 2004;190(3):580–587. doi:10.1086/422534.
  • Tiku V, Tan MW, Dikic I. Mitochondrial functions in infection and immunity. Trends Cell Biol. 2020;30(4):263–275. doi:10.1016/j.tcb.2020.01.006.
  • Chen M, Gan H, Remold HG. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol. 2006;176(6):3707–3716. doi:10.4049/jimmunol.176.6.3707.
  • Shi L, Salamon H, Eugenin EA, et al. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep. 2015;5:18176. doi:10.1038/srep18176.
  • Shi L, Eugenin EA, Subbian S. Immunometabolism in tuberculosis. Front Immunol. 2016;7:150. doi:10.3389/fimmu.2016.00150.
  • Shi L, Jiang Q, Bushkin Y, et al. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. mBio. 2019;10(2):e02550-18. doi:10.1128/mBio.02550-18.
  • Somashekar BS, Amin AG, Rithner CD, et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res. 2011;10(9):4186–4195. doi:10.1021/pr2003352.
  • Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol. 2016;46(11):2574–2586. doi:10.1002/eji.201546259.
  • Asalla S, Mohareer K, Banerjee S. Small molecule mediated restoration of mitochondrial function augments anti-mycobacterial activity of human macrophages subjected to cholesterol induced asymptomatic dyslipidemia. Front Cell Infect Microbiol. 2017;7:439. doi:10.3389/fcimb.2017.00439.
  • Parihar SP, Guler R, Khutlang R, et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis. 2014;209(5):754–763. doi:10.1093/infdis/jit550.
  • Looney MM, Lu Y, Karakousis PC, et al. Mycobacterium tuberculosis infection drives mitochondria-biased dysregulation of host transfer RNA-derived fragments. J Infect Dis. 2021;223(10):1796–1805. doi:10.1093/infdis/jiaa596.
  • Wehrstedt S, Kubis J, Zimmermann A, et al. The tyrosine kinase inhibitor dasatinib reduces the growth of intracellular Mycobacterium tuberculosis despite impairing T-cell function. Eur J Immunol. 2018;48(11):1892–1903. doi:10.1002/eji.201847656.
  • Chiffoleau E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol. 2018;9:227. doi:10.3389/fimmu.2018.00227.
  • Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol. 2013;86(2):191–199. doi:10.1016/j.bcp.2013.04.022.
  • Nanduri R, Bhutani I, Somavarapu AK, et al. ONRLDB–manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery. Database: the journal of biological databases and curation. Database. 2015;2015:bav112. doi:10.1093/database/bav112.
  • Dasgupta S, Rai RC. PPAR-γ and Akt regulate GLUT1 and GLUT3 surface localization during Mycobacterium tuberculosis infection. Mol Cell Biochem. 2018;440(1–2):127–138. doi:10.1007/s11010-017-3161-3.
  • Abdalla AE, Lambert N, Duan X, et al. Interleukin-10 family and tuberculosis: an old story renewed. Int J Biol Sci. 2016;12(6):710–717. doi:10.7150/ijbs.13881.
  • Gordy JT, Luo K, Francica B, et al. Anti-IL-10-mediated enhancement of antitumor efficacy of a dendritic cell-targeting MIP3α-gp100 vaccine in the B16F10 mouse melanoma model is dependent on type I interferons. J Immunother. 2018;41(4):181–189. doi:10.1097/CJI.0000000000000212.
  • Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92. doi:10.3389/fonc.2018.00092.
  • Lee HB, Noh H, Seo JY, et al. Histone deacetylase inhibitors: a novel class of therapeutic agents in diabetic nephropathy. Kidney Int Suppl. 2007;72:S61–S6. doi:10.1038/sj.ki.5002388.
  • Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. JCO. 2002;20(10):2429–2440. doi:10.1200/JCO.2002.04.117.
  • Tsai H-C, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21(3):430–446. doi:10.1016/j.ccr.2011.12.029.
  • Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89. doi:10.1146/annurev-med-111314-035900.
  • Kaminskas E, Farrell AT, Wang Y-C, et al. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005;10(3):176–182. doi:10.1634/theoncologist.10-3-176.
  • Kumar R, Nanduri B. HPIDB-a unified resource for host-pathogen interactions. BMC Bioinform. 2010;11(Suppl 6):S16. doi:10.1186/1471-2105-11-S6-S16.
  • Ammari MG, Gresham CR, McCarthy FM, et al. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford). 2016;2016:baw103. doi:10.1093/database/baw103.
  • James DG. The Hunterian oration on Louis Pasteur’s final judgement. Host reaction, soil or terrain. Trans Med Soc Lond. 1982;99–100:131–147.
  • Ayres JS, Schneider DS. Tolerance of infections. Annu Rev Immunol. 2012;30:271–294. doi:10.1146/annurev-immunol-020711-075030.
  • Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–941. doi:10.1126/science.1214935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.