182
Views
2
CrossRef citations to date
0
Altmetric
Reviews

The role of γδ T cells in the interaction between commensal and pathogenic bacteria in the intestinal mucosa

ORCID Icon, &
Pages 379-392 | Received 23 Mar 2022, Accepted 06 May 2022, Published online: 18 May 2022

References

  • Leshem A, Liwinski T, Elinav E. Immune-microbiota interplay and colonization resistance in infection. Mol Cell. 2020;78(4):597–613. doi:10.1016/j.molcel.2020.03.001.
  • Makimaa H, Ingle H, Baldridge MT. Enteric viral co-infections: pathogenesis and perspective. Viruses. 2020;12(8):904. doi:10.3390/v12080904.
  • Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108 (Suppl 1):4659–4665. doi:10.1073/pnas.1006451107.
  • Tanoue T, Umesaki Y, Honda K. Immune responses to gut microbiota-commensals and pathogens. Gut Microbes. 2010;1(4):224–233. doi:10.4161/gmic.1.4.12613.
  • Yoon MY, Yoon MY, Lee K, Yoon SS. Protective role of gut commensal microbes against intestinal infections. J Microbiol. 2014;52(12):983–989. doi:10.1007/s12275-014-4655-2.
  • Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–690. doi:10.1038/ni.2608.
  • Papotto PH, Yilmaz B, Silva-Santos B. Crosstalk between γδ T cells and the microbiota. Nat Microbiol. 2021;6(9):1110–1117. doi:10.1038/s41564-021-00948-2.
  • Boll G, Rudolphi A, Spiess S, Reimann J. Regional specialization of intraepithelial T cells in the murine small and large intestine. Scand J Immunol. 1995;41(2):103–113. doi:10.1111/j.1365-3083.1995.tb03541.x.
  • Hu MD, Jia L, Edelblum KL. Policing the intestinal epithelial barrier: innate immune functions of intraepithelial lymphocytes. Curr Pathobiol Rep. 2018;6(1):35–46. doi:10.1007/s40139-018-0157-y.
  • Baldwin CL, Damani-Yokota P, Yirsaw A, Loonie K, Teixeira AF, Gillespie A. Special features of γδ T cells in ruminants. Mol Immunol. 2021;134:161–169. doi:10.1016/j.molimm.2021.02.028.
  • Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100. doi:10.1038/nri3384.
  • Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–478. doi:10.1038/nri2781.
  • Yirsaw A, Baldwin CL. Goat γδ T cells. Dev Comp Immunol. 2021;114:103809. doi:10.1016/j.dci.2020.103809.
  • Malinarich FH, Grabski E, Worbs T, et al. Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial γδ T cells is functional in vivo. Eur J Immunol. 2010;40(12):3378–3388. doi:10.1002/eji.201040727.
  • Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47:946–953. doi:10.1002/eji.201646837.
  • Melandri D, Zlatareva I, Chaleil RAG, et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol. 2018;19(12):1352–1365. doi:10.1038/s41590-018-0253-5.
  • Tyler CJ, McCarthy NE, Lindsay JO, et al. Antigen-presenting human γδ T cells promote intestinal CD4+ T cell expression of IL-22 and mucosal release of calprotectin. J Immunol. 2017;198(9):3417–3425. doi:10.4049/jimmunol.1700003.
  • Johansson ME, Hansson GC. Mucus and the goblet cell. Dig Dis. 2013;31(3-4):305–309. doi:10.1159/000354683.
  • Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119–147. doi:10.1146/annurev-immunol-051116-052424.
  • Akiba Y, Hashimoto S, Kaunitz JD. Duodenal chemosensory system: enterocytes, enteroendocrine cells, and tuft cells. Curr Opin Gastroenterol. 2020;36(6):501–508. doi:10.1097/MOG.0000000000000685.
  • Billipp TE, Nadjsombati MS, von Moltke J. Tuning tuft cells: new ligands and effector functions reveal tissue-specific function. Curr Opin Immunol. 2021;68:98–106. doi:10.1016/j.coi.2020.09.006.
  • Jang MH, Kweon M-N, Iwatani K, et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A. 2004;101(16):6110–6115. doi:10.1073/pnas.0400969101.
  • Zigdon M, Bel S. Lysozyme: a double-edged sword in the intestine. Trends Immunol. 2020;41(12):1054–1056. doi:10.1016/j.it.2020.10.010.
  • Eisenhauer PB, Harwig SS, Lehrer RI. Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun. 1992;60(9):3556–3565. doi:10.1128/iai.60.9.3556-3565.1992.
  • Inagaki-Ohara K, Sawaguchi A, Suganuma T, Matsuzaki G, Nawa Y. Intraepithelial lymphocytes express junctional molecules in murine small intestine. Biochem Biophys Res Commun. 2005;331(4):977–983. doi:10.1016/j.bbrc.2005.04.025.
  • Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D. Epithelial defence by gamma delta T cells. Int Arch Allergy Immunol. 2005;137(1):73–81. doi:10.1159/000085107.
  • Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–929. doi:10.1152/ajpgi.2001.280.5.G922.
  • Johansson MEV, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A. 2008;105(39):15064–15069. doi:10.1073/pnas.0803124105.
  • Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4(11):430–435. doi:10.1016/0966-842X(96)10057-3.
  • Lei YM, Nair L, Alegre ML. The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol. 2015;39(1):9–19. doi:10.1016/j.clinre.2014.10.008.
  • Faderl M, Noti M, Corazza N, Mueller C. Keeping bugs in check: the mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life. 2015;67(4):275–285. doi:10.1002/iub.1374.
  • Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255–258. doi:10.1126/science.1209791.
  • Artis D, Wang ML, Keilbaugh SA, et al. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2004;101(37):13596–13600. doi:10.1073/pnas.0404034101.
  • Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A. 2017;114(42):11027–11033. doi:10.1073/pnas.1711395114.
  • Taupin DR, Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A. 2000;97(2):799–804. doi:10.1073/pnas.97.2.799.
  • Aihara E, Engevik KA, Montrose MH. Trefoil factor peptides and gastrointestinal function. Annu Rev Physiol. 2017;79:357–380. doi:10.1146/annurev-physiol-021115-105447.
  • Huang Y, Wang M-M, Yang Z-Z, et al. Pretreatment with intestinal trefoil factor alleviates stress-induced gastric mucosal damage via Akt signaling. World J Gastroenterol. 2020;26(48):7619–7632. doi:10.3748/wjg.v26.i48.7619.
  • Valle Arevalo A, Nobile CJ. Interactions of microorganisms with host mucins: a focus on Candida albicans. FEMS Microbiol Rev. 2020;44(5):645–654. doi:10.1093/femsre/fuaa027.
  • Lefran?ois L, Lycke N. Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer’s patch, and lamina propria ce lls. Curr Protoc ImmunolChapter. 2001;3(Unit 3):19.
  • Rampoldi F, Prinz I. Three layers of intestinal γδ T cells talk different languages with the microbiota. Front Immunol. 2022;13:849954. doi:10.3389/fimmu.2022.849954.
  • Tait Wojno ED, Artis D. Emerging concepts and future challenges in innate lymphoid cell biology. J Exp Med. 2016;213(11):2229–2248. doi:10.1084/jem.20160525.
  • Weizman O-E, Adams NM, Schuster IS, et al. ILC1 confer early host protection at initial sites of viral infection. Cell. 2017;171(4):795–808. doi:10.1016/j.cell.2017.09.052.
  • López-Yglesias AH, Burger E, Camanzo E, et al. T-bet-dependent ILC1- and NK cell-derived IFN-γ mediates cDC1-dependent host resistance against Toxoplasma gondii. PLoS Pathog. 2021;17(1):e1008299. doi:10.1371/journal.ppat.1008299.
  • von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529(7585):221–225. doi:10.1038/nature16161.
  • Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses. Cell. 2015;163(2):381–393. doi:10.1016/j.cell.2015.08.061.
  • Lin YD, Arora J, Diehl K, Bora SA, Cantorna MT. Vitamin D is required for ILC3 derived IL-22 and protection from citrobacter rodentium infection. Front Immunol. 2019;10:1. doi:10.3389/fimmu.2019.00001.
  • Serafini N, Jarade A, Surace L, et al. Trained ILC3 responses promote intestinal defense. Science. 2022;375(6583):859–863. doi:10.1126/science.aaz8777.
  • Snelson M, Clarke RE, Nguyen T-V, et al. Long term high protein diet feeding alters the microbiome and increases intestinal permeability, systemic inflammation and kidney injury in mice. Mol Nutr Food Res. 2021;65(8):e2000851. doi:10.1002/mnfr.202000851.
  • Han Y, Leng Y, Yao G. Effects of antibiotics on intestinal microflora and intestinal mucosal barrier function and its mechanisms. Zhonghua Wei Zhong Bing ji Jiu yi Xue. 2017;29(11):1047–1051. doi:10.3760/cma.j.issn.2095-4352.2017.11.019.
  • Reddy BS, MacFie J, Gatt M, et al. Commensal bacteria do translocate across the intestinal barrier in surgical patients. Clin Nutr. 2007;26(2):208–215. doi:10.1016/j.clnu.2006.10.006.
  • Luo X, et al. Intestinal dysbacteriosis promotes intestinal intraepithelial T lymphocyte activation and proinflamm atory cytokine secretion in mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2016;32:1031–1035.
  • Wei S, Bahl MI, Baunwall SMD, Hvas CL, Licht TR. Determining gut microbial dysbiosis: a review of applied indexes for assessment of intestinal microbiota imbalances. Appl Environ Microbiol. 2021;87(11):e00395-21. doi:10.1128/AEM.00395-21.
  • Tomasello G, Mazzola M, Leone A, et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(4):461–466. doi:10.5507/bp.2016.052.
  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–232. doi:10.1038/nri.2017.7.
  • Tiffany CR, Bäumler AJ. Dysbiosis: from fiction to function. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G602–g608. doi:10.1152/ajpgi.00230.2019.
  • Fachi JL, Sécca C, Rodrigues PB, et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J Exp Med. 2020;217(3):20190489. doi:10.1084/jem.20190489.
  • Jacobson A, Lam L, Rajendram M, et al. A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe. 2018;24(2):296–307. doi:10.1016/j.chom.2018.07.002.
  • Schulthess J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50(2):432–445. doi:10.1016/j.immuni.2018.12.018.
  • Gjonbalaj M, Keith JW, Do MH, et al. Antibiotic degradation by commensal microbes shields pathogens. Infect Immun. 2020;88(4):e00012-20. doi:10.1128/iai.0001220.
  • Siddiqui MT, Cresci GAM. The immunomodulatory functions of butyrate. J Inflamm Res. 2021;14:6025–6041. doi:10.2147/jir.S300989.
  • Drumo R, Pesciaroli M, Ruggeri J, et al. Salmonella enterica serovar typhimurium exploits inflammation to modify swine intestinal microbiota. Front Cell Infect Microbiol. 2015;5:106. doi:10.3389/fcimb.2015.00106.
  • Ling Z, Liu X, Jia X, et al. Impacts of infection with different toxigenic clostridium difficile strains on faecal microbiota in children. Sci Rep. 2014;4:7485. doi:10.1038/srep07485.
  • Low KE, Smith SP, Abbott DW, Boraston AB. The glycoconjugate-degrading enzymes of Clostridium perfringens: tailored catalysts for breaching the intestinal mucus barrier. Glycobiology. 2021;31(6):681–690. doi:10.1093/glycob/cwaa050.
  • Khan S, et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med. 2020;12(567):eaay6218. doi:10.1126/scitranslmed.aay6218.
  • Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1765. doi:10.3389/fmicb.2017.01765.
  • Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS One. 2013;8(9):e74963. doi:10.1371/journal.pone.0074963.
  • Li M, Wang B, Sun X, et al. Upregulation of intestinal barrier function in mice with DSS-induced colitis by a defined bacterial consortium is associated with expansion of IL-17A producing gamma delta T cells. Front Immunol. 2017;8:824. doi:10.3389/fimmu.2017.00824.
  • Zhou QH, Wu FT, Pang LT, Zhang TB, Chen Z. Role of γδT cells in liver diseases and its relationship with intestinal microbiota. World J Gastroenterol. 2020;26(20):2559–2569. doi:10.3748/wjg.v26.i20.2559.
  • Bandeira A, Mota-Santos T, Itohara S, et al. Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization. J Exp Med. 1990;172(1):239–244. doi:10.1084/jem.172.1.239.
  • Fleming C, Cai Y, Sun X, et al. Microbiota-activated CD103+ DCs stemming from microbiota adaptation specifically drive γδT17 proliferation and activation. Microbiome. 2017;5(1):46. doi:10.1186/s40168-017-0263-9.
  • Ivanov II, Frutos RdL, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–349. doi:10.1016/j.chom.2008.09.009.
  • Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–341. doi:10.1016/j.immuni.2009.08.001.
  • Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe. 2010;7(2):140–150. doi:10.1016/j.chom.2010.01.005.
  • Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 2021;36(1):109332. doi:10.1016/j.celrep.2021.109332.
  • Ismail AS, Behrendt CL, Hooper LV. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol. 2009;182(5):3047–3054. doi:10.4049/jimmunol.0802705.
  • Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733–745. doi:10.1038/nri.2017.101.
  • Park S-G, Mathur R, Long M, et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity. 2010;33(5):791–803. doi:10.1016/j.immuni.2010.10.014.
  • Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 2016;22(5):516–523. doi:10.1038/nm.4068.
  • Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D. Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci. 2011;68(14):2357–2370. doi:10.1007/s00018-011-0699-1.
  • Goto Y. Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Front Immunol. 2019;10:2057. doi:10.3389/fimmu.2019.02057.
  • Ismail AS, Severson KM, Vaishnava S, et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A. 2011;108(21):8743–8748. doi:10.1073/pnas.1019574108.
  • Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5):785–800. doi:10.1016/j.immuni.2014.03.013.
  • Van Acker HH, Anguille S, De Reu H, et al. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Front Immunol. 2018;9:658. doi:10.3389/fimmu.2018.00658.
  • Jia L, Edelblum KL. Intravital imaging of intraepithelial lymphocytes in murine small intestine. J Vis Exp. 2019;(148):10.3791/59853. doi:10.3791/59853.
  • Edelblum KL, Shen L, Weber CR, et al. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci U S A. 2012;109(18):7097–7102. doi:10.1073/pnas.1112519109.
  • Edelblum KL, Singh G, Odenwald MA, et al. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology. 2015;148(7):1417–1426. doi:10.1053/j.gastro.2015.02.053.
  • Alexander JS, Dayton T, Davis C, et al. Activated T-lymphocytes express occludin, a component of tight junctions. Inflammation. 1998; 22(6):573–582.
  • Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994;372(6502):190–193. doi:10.1038/372190a0.
  • Wang X, Sumida H, Cyster JG. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211(12):2351–2359. doi:10.1084/jem.20140646.
  • Sumida H, Lu E, Chen H, Yang Q, Mackie K, Cyster JG. GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci Immunol. 2017;2(18):eaao1135. doi:10.1126/sciimmunol.aao1135.
  • Walliser I, Göbel TW. Chicken IL-17A is expressed in αβ and γδ T cell subsets and binds to a receptor present on macrophages, and T cells. Dev Comp Immunol. 2018;81:44–53. doi:10.1016/j.dci.2017.11.004.
  • Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev. 2020;298(1):165–180. doi:10.1111/imr.12915.
  • Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell. 2017;171(4):783–794. e713,doi:10.1016/j.cell.2017.08.046.
  • Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31(2):321–330. doi:10.1016/j.immuni.2009.06.020.
  • Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7(3):164–174. doi:10.1038/cmi.2010.21.
  • Chen Y-S, Chen I-B, Pham G, et al. IL-17-producing γδ T cells protect against clostridium difficile infection. J Clin Invest. 2020;130(5):2377–2390. doi:10.1172/JCI127242.
  • Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017;18(6):612–621. doi:10.1038/ni.3742.
  • Boismenu R, Feng L, Xia YY, Chang JC, Havran WL. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of infl ammatory cells to damaged epithelia. Journal of Immunology. 1996;157:985–992.
  • Romagnoli PA, Sheridan BS, Pham QM, Lefrancois L, Khanna KM. IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 2016;113(30):8502–8507. doi:10.1073/pnas.1600713113.
  • Libera J, Wittner M, Kantowski M, et al. Decreased frequency of intestinal CD39+ γδ+ T cells with tissue-resident memory phenotype in inflammatory bowel disease. Front Immunol. 2020;11:567472. doi:10.3389/fimmu.2020.567472.
  • Noble A, Durant L, Hoyles L, et al. Deficient resident memory T cell and CD8 T cell response to commensals in inflammatory bowel disease. J Crohns Colitis. 2020;14(4):525–537. doi:10.1093/ecco-jcc/jjz175.
  • Boismenu R. Function of intestinal gammadelta T cells. Immunol Res. 2000;21(2-3):123–127. doi:10.1385/IR:21:2-3:123.
  • Yang H, Spencer AU, Teitelbaum DH. Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine. 2005;31(6):419–428. doi:10.1016/j.cyto.2005.06.014.
  • Yang H, Antony PA, Wildhaber BE, Teitelbaum DH. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol. 2004;172(7):4151–4158. doi:10.4049/jimmunol.172.7.4151.
  • Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A. 2002;99(22):14338–14343. doi:10.1073/pnas.212290499.
  • Song Y, Hu W, Xiao Y, et al. Keratinocyte growth factor ameliorates mycophenolate mofetil-induced intestinal barrier disruption in mice. Mol Immunol. 2020;124:61–69. doi:10.1016/j.molimm.2020.04.012.
  • Dalton JE, Cruickshank SM, Egan CE, et al. Intraepithelial gammadelta + lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology. 2006;131(3):818–829. doi:10.1053/j.gastro.2006.06.003.
  • Patnaude L, Mayo M, Mario R, et al. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci. 2021;271:119195. doi:10.1016/j.lfs.2021.119195.
  • Shohan M, Dehghani R, Khodadadi A, et al. Interleukin-22 and intestinal homeostasis: protective or destructive? IUBMB Life. 2020;72(8):1585–1602. doi:10.1002/iub.2295.
  • Catalan-Serra I, Sandvik AK, Bruland T, Andreu-Ballester JC. Gammadelta T cells in Crohn’s disease: a new player in the disease pathogenesis? J Crohns Colitis. 2017;11(9):1135–1145. doi:10.1093/ecco-jcc/jjx039.
  • Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev. 2020;298(1):198–217. doi:10.1111/imr.12916.
  • Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci. 2021;11(1):48. doi:10.1186/s13578-021-00565-w.
  • Belkadi A, Dietrich C, Machavoine F, Victor JR, Leite-de-Moraes M. γδ T cells amplify Blomia tropicalis-induced allergic airway disease. Allergy. 2019;74(2):395–398. doi:10.1111/all.13618.
  • Inoue S-I, Niikura M, Asahi H, et al. Preferentially expanding Vγ1+ γδ T cells are associated with protective immunity against Plasmodium infection in mice. Eur J Immunol. 2017;47(4):685–691. doi:10.1002/eji.201646699.
  • Nishiyama S, Pradipta A, Ma JS, Sasai M, Yamamoto M. T cell-derived interferon-γ is required for host defense to Toxoplasma gondii. Parasitol Int. 2020;75:102049. doi:10.1016/j.parint.2019.102049.
  • Inoue S, Niikura M, Mineo S, Kobayashi F. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria. Front Immunol. 2013;4:258. doi:10.3389/fimmu.2013.00258.
  • Maher CO, Dunne K, Comerford R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J Immunol. 2015;194(12):5953–5960. doi:10.4049/jimmunol.1403066.
  • Olson GS, Moore SW, Richter JM, et al. Increased frequency of systemic pro-inflammatory Vδ1+ γδ T cells in HIV elite controllers correlates with gut viral load. Sci Rep. 2018;8(1):16471. doi:10.1038/s41598-018-34576-4.
  • Monin L, Ushakov DS, Arnesen H, et al. γδ T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis. Mucosal Immunol. 2020;13(6):969–981. doi:10.1038/s41385-020-0305-7.
  • Percival SS. Aged garlic extract modifies human immunity. J Nutr. 2016;146(2):433S–436S. doi:10.3945/jn.115.210427.
  • Nakamizo S, Honda T, Adachi A, et al. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci Rep. 2017;7(1):14076. doi:10.1038/s41598-017-14292-1.
  • Shi Z, Wu X, Yu S, et al. Short-term exposure to a western diet induces psoriasiform dermatitis by promoting accumulation of IL-17A-producing γδ T Cells. J Invest Dermatol. 2020;140(9):1815–1823. doi:10.1016/j.jid.2020.01.020.
  • Sullivan ZA, Khoury-Hanold W, Lim J, et al. γδ T cells regulate the intestinal response to nutrient sensing. Science. 2021;371(6535):eaba8310. doi:10.1126/science.aba8310.
  • Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (Shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–487. doi:10.1080/07315724.2014.950391.
  • Nantz MP, Rowe CA, Muller CE, et al. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: a randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr. 2012;31(3):337–344. doi:10.1016/j.clnu.2011.11.019.
  • Nagafuchi S, Totsuka M, Hachimura S, et al. Dietary nucleotides increase the mucosal IgA response and the secretion of transforming growth factor beta from intestinal epithelial cells in mice. Cytotechnology. 2002; [40(1-3):49–58. doi:10.1023/a:1023962021081
  • Pai MH, Liu JJ, Yeh SL, Chen WJ, Yeh CL. Glutamine modulates acute dextran sulphate sodium-induced changes in small-intestinal intraepithelial γδ-T-lymphocyte expression in mice. Br J Nutr. 2014;111(6):1032–1039. doi:10.1017/s0007114513003425.
  • Nantz MP, Rowe CA, Muller C, et al. Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study. Nutr J. 2013;12(1):161. doi:10.1186/1475-2891-12-161.
  • Kamath AB, Wang L, Das H, et al. Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci U S A. 2003;100(10):6009–6014. doi:10.1073/pnas.1035603100.
  • Saeed M, Khan MS, Kamboh AA, et al. L-theanine: an astounding sui generis amino acid in poultry nutrition. Poult Sci. 2020;99(11):5625–5636. doi:10.1016/j.psj.2020.07.016.
  • Percival SS, Bukowski JF, Milner J. Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr. 2008;138(1):1–4. doi:10.1093/jn/138.1.1.
  • Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b + dermal dendritic cells and drive protective cutaneous immunity. Immunity. 2015;43(3):515–526. doi:10.1016/j.immuni.2015.08.016.
  • Baral P, Umans BD, Li L, et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat Med. 2018;24(4):417–426. doi:10.1038/nm.4501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.