293
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Role of natural killer and B cell interaction in inducing pathogen specific immune responses

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 304-322 | Received 24 Aug 2022, Accepted 19 Jan 2023, Published online: 02 Feb 2023

References

  • Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14:49.
  • Pierce S, Geanes ES, Bradley T. Targeting natural killer cells for improved immunity and control of the adaptive immune response. Front Cell Infect Microbiol. 2020;10:00231.
  • Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975;5(2):117–121. doi:10.1002/eji.1830050209.
  • Chen Y, Lu D, Churov A, Fu R. Research progress on NK cell receptors and their signaling pathways. Med Inflamm, 2020;2020:6437057.
  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.
  • Grégoire C, Chasson L, Luci C, et al. The trafficking of natural killer cells. Immunol Rev. 2007;220(1):169–182.
  • Oldham RK, Siwarski D, McCoy JL, Plata EJ, Herberman RB. Evaluation of a cell-mediated cytotoxicity assay utilizing 125 iododeoxyuridine-labeled tissue-culture target cells. Natl Cancer Inst Monogr. 1973;37:49–58.
  • Pross H, Jondal M. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clin Exp Immunol. 1975;21(2):226–235.
  • Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975a;16(2):230–239. doi:10.1002/ijc.2910160205.
  • Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975b;16(2):216–229. doi:10.1002/ijc.2910160204.
  • Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009;457(7230):722–725.
  • Reynders A, Yessaad N, Manh TPV, et al. Identity, regulation and in vivo function of gut NKp46+ RORγt + and NKp46+ RORγt − lymphoid cells. Embo J. 2011;30(14):2934–2947.
  • Chinen H, Matsuoka K, Sato T, et al. Lamina propria c-kit + immune precursors reside in human adult intestine and differentiate into natural killer cells. Gastroenterology 2007;133(2):559–573.
  • Halama N, Braun M, Kahlert C, et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res. 2011;17(4):678–689.
  • Dalbeth N, Gundle R, Davies RJ, Lee YG, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol. 2004;173(10):6418–6426. doi:10.4049/jimmunol.173.10.6418.
  • Schleypen JS, Baur N, Kammerer R, et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):718–725.
  • Faget J, Biota C, Bachelot T, et al. Early detection of tumor cells by innate immune cells leads to Treg recruitment through CCL22 production by tumor cells. Cancer Res. 2011;71(19):6143–6152. doi:10.1158/0008-5472.CAN-11-0573.
  • Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+ CD3− LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997;7(4):493–504. doi:10.1016/S1074-7613(00)80371-4.
  • Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 2014;41(3):354–365.
  • Spits H, Artis D, Colonna M, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–149.
  • Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 2015;16(3):306–317.
  • Vivier E, van de Pavert SA, Cooper MD, Belz GT. The evolution of innate lymphoid cells. Nat Immunol. 2016;17:790.
  • Eberl G, Colonna M, Di Santo J, McKenzie A. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 2015;348(6237):aaa6566. doi:10.1126/science.aaa6566.
  • Yokoyama WM, Sojka DK, Peng H, Tian Z. Tissue-resident natural killer cells. In Cold Spring harbor symposia on quantitative biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2013, p. 149–156.
  • Klose CS, Flach M, Möhle L, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–356. doi:10.1016/j.cell.2014.03.030.
  • Victorino F, Sojka DK, Brodsky KS, et al. Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by Anti–Asialo-GM1 antibody. J Immunol. 2015;195:4973–4985.
  • Tessmer MS, Reilly EC, Brossay L. Salivary gland NK cells are phenotypically and functionally unique. PLoS Pathog. 2011;7:e1001254.
  • Wang J, Li F, Zheng M, Sun R, Wei H, Tian Z. Lung natural killer cells in mice: phenotype and response to respiratory infection. Immunology 2012;137(1):37–47.
  • Sojka DK, Plougastel-Douglas B, Yang L, et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 2014a;3:e01659.
  • Sojka DK, Tian Z, Yokoyama WM. Tissue-resident natural killer cells and their potential diversity. Sem Immunol 2014b;127–131.
  • Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869. doi:10.3389/fimmu.2018.01869.
  • He Y, Tian Z. NK cell education via nonclassical MHC and non-MHC ligands. Cell Mol Immunol. 2017;14(4):321–330.
  • Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol. 2006;6(7):520–531.
  • Eissens DN, Spanholtz J, Van Der Meer A, et al. Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PloS One 2012;7(2):e30930. doi:10.1371/journal.pone.0030930.
  • Freud AG, Becknell B, Roychowdhury S, et al. A human CD34 (+) subset resides in lymph nodes and differentiates into CD56brightnatural killer cells. Immunity 2005;22(3):295–304.
  • Freud AG, Keller KA, Scoville SD, et al. NKp80 defines a critical step during human natural killer cell development. Cell Rep. 2016;16(2):379–391.
  • Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 2006;203(4):1033–1043.
  • Moretta L, Montaldo E, Vacca P, et al. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol. 2014;164(4):253–264.
  • Artis D, Spits H. The biology of innate lymphoid cells. Nature 2015;517(7534):293–301.
  • Erick TK, Brossay L. Phenotype and functions of conventional and non-conventional NK cells. Curr Opin Immunol. 2016;38:67–74.
  • Krzewski K, Strominger JL. The killer’s kiss: the many functions of NK cell immunological synapses. Curr Opin Cell Biol. 2008;20:597–605.
  • Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281(5381):1305–1308. doi:10.1126/science.281.5381.1305.
  • Bhat R, Watzl C. Serial killing of tumor cells by human natural killer cells–enhancement by therapeutic antibodies. PloS one. 2007;2(3):e326. doi:10.1371/journal.pone.0000326.
  • Reefman E, Kay JG, Wood SM, et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 2010;184(9):4852–4862. doi:10.4049/jimmunol.0803954.
  • Rajasekaran K, Kumar P, Schuldt KM, et al. Signaling by Fyn-ADAP via the Carma1–Bcl-10–MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol. 2013;14(11):1127–1136.
  • Freeman BE, Raué H-P, Hill AB, Slifka MK. Cytokine-mediated activation of NK cells during viral infection. J Virol. 2015;89(15):7922–7931. doi:10.1128/JVI.00199-15.
  • Zhang Y, Huang B. The Development and Diversity of ILCs, NK Cells and Their Relevance in Health and Diseases. Adv Exp Med Biol. 2017;1024:225-244. doi:10.1007/978-981-10-5987-2_11. PMID: 28921473.
  • Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–525.
  • Kucuksezer UC, Aktas Cetin E, Esen F, et al. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol. 2021;12:622306.
  • Koka R, Burkett PR, Chien M, et al. Interleukin (IL)-15Rα–deficient natural killer cells survive in normal but not IL-15Rα–deficient mice. J Exp Med. 2003;197(8):977–984. doi:10.1084/jem.20021836.
  • Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol. 2004;172(2):864–870.
  • Prlic M, Blazar BR, Farrar MA, Jameson SC. In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med. 2003;197(8):967–976. doi:10.1084/jem.20021847.
  • Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med. 2011;208(2):357–368.
  • O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell–and B cell–independent adaptive immunity mediated by natural killer cells. Nat Immunol. 2006;7(5):507–516.
  • Paust S, Gill HS, Wang B-Z, et al. Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nat Immunol. 2010;11(12):1127–1135.
  • Peng H, Jiang X, Chen Y, et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest. 2013;123:1444–1456.
  • van den Boorn JG, Jakobs C, Hagen C, et al. Inflammasome-dependent induction of adaptive NK cell memory. Immunity 2016;44(6):1406–1421.
  • Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457(7229):557–561.
  • Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol. 2006;176(3):1517–1524. doi:10.4049/jimmunol.176.3.1517.
  • Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med. 2012;209(5):947–954. doi:10.1084/jem.20111760.
  • Firth MA, Madera S, Beaulieu AM, et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med. 2013;210(13):2981–2990. doi:10.1084/jem.20130417.
  • Zawislak CL, Beaulieu AM, Loeb GB, et al. Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci. 2013;110: 6967–6972.
  • Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. 2009. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci. 106:1915–1919.
  • Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J Exp Med. 2012;209:2351–2365.
  • Romee R, Schneider S. E, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood J Am Soc Hematol. 2012;120:4751–4760.
  • Foley B, Cooley S, Verneris M. R, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C + natural killer cells with potent function. Blood J Am Soc Hematol. 2012;119:2665–2674.
  • Lopez-Vergès S, Milush JM, Schwartz BS, et al. 2011. Expansion of a unique CD57+ NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci. 108, p. 14725–14732.
  • Béziat V, Liu L. L, Malmberg J-A, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood J Am Soc Hematol. 2013;121:2678–2688.
  • Choreño Parra JA, Martínez Zúñiga N, Jiménez Zamudio LA, Jiménez Álvarez LA, Salinas Lara C, Zúñiga J. Memory of natural killer cells: a new chance against Mycobacterium tuberculosis? Front Immunol. 2017;8:967. doi:10.3389/fimmu.2017.00967.
  • Brillantes M, Beaulieu AM. Memory and memory-like NK cell responses to microbial pathogens. Front Cell Infect Microbiol. 2020;10:102.
  • Herrera L, Martin-Inaraja M, Santos S, et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022;165(2):234–249.
  • Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298–300.
  • Gyurova IE, Ali A, Waggoner SN. Natural killer cell regulation of B cell responses in the context of viral infection. Viral Immunol. 2020;33(4):334–341.
  • Lewis GK, Pazgier M, Evans DT, et al. Beyond Viral Neutralization. AIDS Res Hum Retroviruses. 2017;33(8):760–764.
  • Rubtsova K, Rubtsov AV, van Dyk LF, Kappler JW, Marrack P. 2013. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance Proc Natl Acad Sci. 110: E3216–E3224.
  • Rubtsova K, Rubtsov AV, Cancro MP, Marrack P. Age-associated B cells: a T-bet–dependent effector with roles in protective and pathogenic immunity. J Immunol. 2015;195(5):1933–1937. doi:10.4049/jimmunol.1501209.
  • Yuan D, Koh CY, Wilder JA. Interactions between B lymphocytes and NK cells. Faseb J. 1994;8(13):1012–1018. doi:10.1096/fasebj.8.13.7926365.
  • Gao N, Jennings P, Yuan D. Requirements for the natural killer cell-mediated induction of IgG1 and IgG2a expression in B lymphocytes. Int immunol. 2008;20:645–657.
  • Yuan D, Koh CY, Wilder JA. Interactions between B lymphocytes and NK cells. FASEB J. 1994 Oct;8(13):1012–1018. doi:10.1096/fasebj.8.13.7926365. PMID: 7926365.
  • Vyakarnam A, Brenner MK, Reittie JE, Houker CH, Lachmann PJ. Human clones with natural killer function can activate B cells and secrete B cell differentiation factors. Eur J Immunol. 1985;15(6):606–610.
  • Katz P, Whalen G, Cupps TR, Mitchell SR, Evans M. Natural killer cells can enhance the proliferative responses of B lymphocytes. Cell Immunol. 1989;120(1):270–276.
  • Becker J, Kolanus W, Lonnemann C, Schmidt R. Human natural killer clones enhance in vitro antibody production by tumour necrosis factor alpha and gamma interferon. Scand J Immunol. 1990;32(2):153–162.
  • Naranjo-Gomez M, Cahen M, Lambour J, Boyer-Clavel M, Pelegrin M. Immunomodulatory Role of NK Cells during Antiviral Antibody Therapy. Vaccines (Basel). 2021;9(2):137.
  • Parsa R, Lund H, Georgoudaki AM, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537–1553.
  • Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015;74(2):318–326.
  • Blanca IR, Bere EW, Young HA, Ortaldo JR. Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: role of memory B cells and CD5+ B cells. J Immunol. 2001;167(11):6132–6139. doi:10.4049/jimmunol.167.11.6132.
  • Parra D, Takizawa F, Sunyer JO. Evolution of B cell immunity. Annu Rev Anim Biosci. 2013;1:65–97.
  • Tsay GJ, Zouali M. The interplay between innate-like B cells and other cell types in autoimmunity. Front Immunol. 2018;9:1064.
  • McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clin Immunol (Orlando, Fl.). 2016;164:10–20.
  • Meazza R, Tuberosa C, Cetica V, et al. XLP1 inhibitory effect by 2B4 does not affect DNAM-1 and NKG2D activating pathways in NK cells. Eur J Immunol. 2014;44:1526–1534.
  • Jud A, Kotur M, Berger C, Gysin C, Nadal D, Lünemann A. Tonsillar CD56brightNKG2A + NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ. Oncotarget 2017;8:6130–6141.
  • Costa-Garcia M, Vera A, Moraru M, Vilches C, López-Botet M, Muntasell A. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus. J Immunol. 2015;194(6):2715–2724. doi:10.4049/jimmunol.1402281.
  • Muntasell A, Pupuleku A, Cisneros E, et al. Relationship of NKG2C copy number with the distribution of distinct cytomegalovirus-induced adaptive NK cell subsets. J Immunol. 2016;196(9):3818–3827. doi:10.4049/jimmunol.1502438.
  • Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015;42(3):443–456.
  • Gabrielli S, Ortolani C, Del Zotto G, et al. The memories of NK cells: innate-adaptive immune intrinsic crosstalk. J Immunol Res. 2016;2016:1376595. doi:10.1155/2016/1376595.
  • Pène J, Gauchat J-F, Lécart S, et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172:5154–5157.
  • Bruhns P, Iannascoli B, England P, et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood J Am Soc Hematol. 2009;113:3716–3725.
  • Tian Y, Zajac AJ. IL-21 and T cell differentiation: consider the context. Trends Immunol. 2016;37:557–568.
  • Berrien-Elliott MM, Wagner JA, Fehniger TA. Human cytokine-induced memory-like natural killer cells. J Innate Immun. 2015;7(6):563–571.
  • Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther. 2021;12(1):592. doi:10.1186/s13287-021-02655-5.
  • Wagner JA, Berrien-Elliott MM, Rosario M, et al. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and FcγRIIIa-triggered responses. Biol Blood Marrow Transplant. 2017;23(3):398–404.
  • Wilder JA, Koh CY, Yuan D. The role of NK cells during in vivo antigen-specific antibody responses. J Immunol. 1996;156(1):146–152.
  • Satoskar AR, Stamm LM, Zhang X, et al. NK cell-deficient mice develop a Th1-like response but fail to mount an efficient antigen-specific IgG2a antibody response. J Immunol. 1999;163(10):5298–5302.
  • Jennings P, Yuan D. NK cell enhancement of antigen presentation by B lymphocytes. J Immunol. 2009;182:2879–2887.
  • Crawford A, MacLeod M, Schumacher T, Corlett L, Gray D. Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol. 2006;176(6):3498–3506. doi:10.4049/jimmunol.176.6.3498.
  • Linton P-J, Bautista B, Biederman E, et al. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med. 2003;197:875–883.
  • Niemeyer M, Darmoise A, Mollenkopf HJ, et al. Natural killer T‐cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology 2008;123(1):45–56. doi:10.1111/j.1365-2567.2007.02701.x.
  • Bradley T, Peppa D, Pedroza-Pacheco I, et al. RAB11FIP5 expression and altered natural killer cell function are associated with induction of HIV broadly neutralizing antibody responses. Cell 2018;175(2):387–399. e17. doi:10.1016/j.cell.2018.08.064.
  • Yuan D, Bibi R, Dang T. The role of adjuvant on the regulatory effects of NK cells on B cell responses as revealed by a new model of NK cell deficiency. International immunology,. 2004;16:707–716.
  • Koh CY, Yuan D. The effect of NK cell activation by tumor cells on antigen-specific antibody responses. J Immunol. 1997;159(10):4745–4752.
  • Karupiah G, Sacks TE, Klinman DM, et al. Murine cytomegalovirus infection-induced polyclonal B cell activation is independent of CD4+ T cells and CD40. Virology 1998;240(1):12–26.
  • Palladino G, Mozdzanowska K, Washko G, Gerhard W. Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice. J Virol. 1995;69(4):2075–2081. doi:10.1128/JVI.69.4.2075-2081.1995.
  • Huber VC, McKeon RM, Brackin MN, et al. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin Vaccine Immunol. 2006;13(9):981–990.
  • Coutelier J-P, Van der Logt J, Heessen F, Warnier G, Van Snick J. IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med. 1987;165(1):64–69.
  • Baumgarth N, Kelso A. In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol. 1996;70(7):4411–4418. doi:10.1128/JVI.70.7.4411-4418.1996.
  • Graham M, Dalton D, Giltinan D, Braciale V, Stewart T, Braciale T. Response to influenza infection in mice with a targeted disruption in the interferon gamma gene. J Exp Med. 1993;178(5):1725–1732.
  • Szomolanyi-Tsuda E, Welsh RM. T cell-independent antibody-mediated clearance of polyoma virus in T cell-deficient mice. J Exp Med. 1996;183:403–411.
  • Farsakoglu Y, Palomino-Segura M, Latino I, et al. Influenza vaccination induces NK-cell-mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner. Cell Rep. 2019;26(9):2307–2315. doi:10.1016/j.celrep.2019.01.104.
  • Banerjee D, Thibert RF. Natural killer-like cells found in B-cell compartments of human lymphoid tissues. Nature. 1983;304(5923):270–272.
  • Huot N, Jacquelin B, Garcia-Tellez T, et al. Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med. 2017;23(11):1277–1286. doi:10.1038/nm.4421.
  • Rascle P, Jacquelin B, Petitdemange C, et al. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021;24(10):103109. doi:10.1016/j.isci.2021.103109.
  • Markine-Goriaynoff D, van der Logt JT, Truyens C, et al. IFN-γ-independent IgG2a production in mice infected with viruses and parasites. Int Immunol. 2000;12(2):223–230.
  • Koh CY, Yuan D. The functional relevance of NK-cell-mediated upregulation of antigen-specific IgG2a responses. Cell Immunol. 2000;204(2):135–142.
  • Gao N, Dang T, Yuan D. IFN-γ-dependent and-independent initiation of switch recombination by NK cells. J Immunol. 2001;167(4):2011–2018.
  • Collins JT, Dunnick WA. Germline transcripts of the murine immunoglobulin γ2a gene: structure and induction by IFN-γ. Int Immunol. 1993;5(8):885–891. doi:10.1093/intimm/5.8.885.
  • Xu HC, Huang J, Pandyra AA, et al. Lymphocytes negatively regulate NK cell activity via Qa-1b following viral infection. Cell Rep. 2017;21(9):2528–2540.
  • van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural killer cell dysfunction and its role in COVID-19. Int J Mol Sci. 2020;21:6351.
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–270. doi:10.1038/s41577-020-0308-3.
  • Liu B, Han J, Cheng X, et al. Reduced numbers of T cells and B cells correlates with persistent SARS-CoV-2 presence in non-severe COVID-19 patients. Sci Rep. 2020;10(1):17718–17718. doi:10.1038/s41598-020-73955-8.
  • Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight,. 2020;5:137799.
  • Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–398.
  • Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med. 2020;1(2):100016. doi:10.1016/j.xcrm.2020.100016.
  • Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583(7815):290–295.
  • Rezaei M, Mahmoudi S, Mortaz E, Marjani M. Immune cell profiling and antibody responses in patients with COVID-19. BMC Infect Dis. 2021;21:1–9.
  • Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535. doi:10.1038/s41423-020-0402-2.
  • Jeyaraman M, Muthu S, Bapat A, et al. Bracing NK cell based therapy to relegate pulmonary inflammation in COVID-19. Heliyon,. 2021;7(7):e07635–e07635. doi:10.1016/j.heliyon.2021.e07635.
  • Sinha S, Guo Y, Thet S, Yuan D. IFN type I and type II independent enhancement of B cell TLR7 expression by natural killer cells. J Leukoc Biol. 2012;92(4):713–722.
  • Yuan D. The role of CD2 family members in NK-cell regulation of B-cell antibody production. Antibodies 2014;3:1–15.
  • Kishimoto T. Interleukin-6: from basic science to medicine—40 years in immunology. Annu Rev Immunol. 2005;23:1–21. doi:10.1146/annurev.immunol.23.021704.115806.
  • Betts M, Beining P, Brunswick M, et al. Lipopolysaccharide from Brucella abortus behaves as a T-cell-independent type 1 carrier in murine antigen-specific antibody ­responses. Infect Immun. 1993;61(5):1722–1729. doi:10.1128/iai.61.5.1722-1729.1993.
  • Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol. 2006;80(9):4286–4291. doi:10.1128/JVI.80.9.4286-4291.2006.
  • Gao N, Jennings P, Guo Y, Yuan D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus. Innate Immun. 2011;17(2):152–163.
  • Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized mouse models for the advancement of innate lymphoid cell-based cancer immunotherapies. Front Immunol. 2021;12:648580.
  • Watanabe Y, Takahashi T, Okajima A, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). International immunology. 2009;21:843–858.
  • Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. 2015;21(5):431–439.
  • Li Y, Di Santo JP. Modeling infectious diseases in mice with a “Humanized” immune system. Microbiology spectrum,. 2019;7:7.2. 26.
  • Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg therapy for inflammatory bowel disease in humanized mice. Cells 2021;10:1847.
  • Tyagi RK, Gleeson PJ, Arnold L, et al. High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure. BMC Med. 2018;16:181.
  • Tyagi RK, Jacobse J, Li J, et al. HLA-restriction of human Treg cells is not required for therapeutic efficacy of low-dose IL-2 in humanized mice. Front Immunol. 2021;12:630204.
  • Tyagi RK, Li J, Jacobse J, Snapper SB, Shouval DS, Goettel JA. Humanized mouse models of genetic immune disorders and hematological malignancies. Biochem Pharmacol. 2020;174:113671. doi:10.1016/j.bcp.2019.113671.
  • Douam F, Ziegler CG, Hrebikova G, et al. Selective expansion of myeloid and NK cells in humanized mice yields human-like vaccine responses. Nat Commun. 2018;9(1):1–19. doi:10.1038/s41467-018-07478-2.
  • Zamora AE, Grossenbacher SK, Aguilar EG, Murphy WJ. Models to study NK Cell biology and possible clinical application. Curr Protoc Immunol. 2015;110:14.37.1–14.37.14. doi:10.1002/0471142735.im1437s110.
  • Katano I, Nishime C, Ito R, et al. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15- transgenic NOG mouse. Sci. Rep 2017;7:17230–17230.
  • Matsuda M, Ono R, Iyoda T, et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci Allian. 2019;2:e201800195.
  • Vahedi F, Nham T, Poznanski SM, et al. Ex vivo expanded human NK cells survive and proliferate in humanized mice with autologous human immune cells. Sci Rep. 2017;7(1):12083. doi:10.1038/s41598-017-12223-8.
  • Herndler-Brandstetter D, Shan L, Yao Y, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci USA. 2017;114(45):E9626–e9634. doi:10.1073/pnas.1705301114.
  • Radtke S, Chan Y-Y, Sippel TR, Kiem H-P, Rongvaux A. MISTRG mice support engraftment and assessment of nonhuman primate hematopoietic stem and progenitor cells. Exp Hematol. 2019;70:31–41.e1. doi:10.1016/j.exphem.2018.12.003.
  • Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32:364–372.
  • Nguyen R, Patel AG, Griffiths LM, et al. Next-generation humanized patient-derived xenograft mouse model for pre-clinical antibody studies in neuroblastoma. Cancer Immunol Immunother. 2021;70(3):721–732.
  • Meraz IM, Majidi M, Meng F, et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res. 2019;7(8):1267–1279. doi:10.1158/2326-6066.CIR-18-0874.
  • Jangalwe S, Shultz LD, Mathew A, Brehm MA. Improved B cell development in humanized NOD-scid IL2Rγ(null) mice transgenically expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor and interleukin-3. Immun Inflamm Dis. 2016;4(4):427–440. doi:10.1002/iid3.124.
  • Yu H, Borsotti C, Schickel J-N, et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 2017;129(8):959–969. doi:10.1182/blood-2016-04-709584.
  • Yanagawa S, Tahara H, Shirouzu T, et al. Development of a humanized mouse model to analyze antibodies specific for human leukocyte antigen (HLA). PLoS One. 2021;16(2):e0236614. doi:10.1371/journal.pone.0236614.
  • Page A, Laurent E, Nègre D, et al. Efficient adoptive transfer of autologous modified B cells: a new humanized platform mouse model for testing B cells reprogramming therapies. Cancer Immunol Immunother. 2022;71(7):1771–1775.
  • Chen JW, Schickel JN, Tsakiris N, et al. Positive and negative selection shape the human naive B cell repertoire. J Clin Invest. 2022;12:132.
  • Cheng L, Li G, Pellegry CM, et al. TLR9- and CD40-targeting vaccination promotes human B Cell maturation and IgG induction via pDC-dependent mechanisms in humanized mice. Front Immunol. 2021;12:672143.
  • Tian M, McGovern K, Cheng HL, et al. Conditional antibody expression to avoid central B cell deletion in humanized HIV-1 vaccine mouse models. Proc Natl Acad Sci USA. 2020;117(14):7929–7940. doi:10.1073/pnas.1921996117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.