262
Views
0
CrossRef citations to date
0
Altmetric
Articles

Finite-Time Sliding Mode Control for Trajectory Tracking of WMRs with Wheel-Soil Friction Disturbance Adaptability

, , &
Pages 80-101 | Published online: 29 Mar 2017

References

  • Cui, R. X., J. Guo, and Z. Y. Mao. 2014. Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dynamics 79:501–11. doi:10.1007/s11071-014-1682-9.
  • De Jes´Us Rubio, J., V. Aquino, and M. Figueroa. 2013. Inverse kinematics of a mobile robot. Neural Computing and Applications 23:187–94. doi:10.1007/s00521-012-0854-0.
  • De Wit, C. C., H. Olsson, K. J. Astrom, and P. Lischinsky. 1995. A new model for control of systems with friction. IEEE Transactions on Automatic Control 40:419–25. doi:10.1109/9.376053.
  • Ding, L., H. B. Gao, Z. Q. Deng, K. Nagatani, and K. Yoshida. 2011. Experimental study and analysis on driving wheels performance for planetary exploration rovers moving in deformable soil. Journal of Terramechanics 48:27–45. doi:10.1016/j.jterra.2010.08.001.
  • Ding, S. H., S. H. Li, and Q. Li. 2010. Global uniform asymptotical stability of a class of nonlinear cascaded systems with application to a nonholonomic wheeled mobile robot. International Journal of Systems Science 41:1301–12. doi:10.1080/00207720902974579.
  • Dixon, W. E., Z. P. Jiang, and D. M. Dawson. 2000. Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach. Automatica 36:1741–6. doi:10.1016/S0005-1098(00)00099-6.
  • Fang, Y. C., W. E. Dixion, D. M. Dawson, and E. Zergeroglu. 2003. Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Transactions on Mechatronics 8:418–23. doi:10.1109/TMECH.2003.816822.
  • Fang, Y. C., B. J. Ma, P. C. Wang, and X. B. Zhang. 2012. A motion planning-based adaptive control method for an underactuated crane system. IEEE Transactions on Control Systems Technology 20:241–8.
  • Ghaffari, A., A. Shariati, and A. H. Shamekhi. 2016. A modified dynamical formulation for two-wheeled self-balancing robots. Nonlinear Dynamics 83:217–30. doi:10.1007/s11071-015-2321-9.
  • Hu, Q. L., B. Y. Jiang, and M. I. Friswell. 2014. Robust saturated finite time output feedback attitude stabilization for rigid spacecraft. Journal of Guidance, Control, and Dynamics 37:1914–29. doi:10.2514/1.G000153.
  • Hu, Q. L., B. Y. Jiang, and Y. M. Zhang. 2016. Output feedback attitude tracking for spacecraft under control saturation and disturbance. Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME 138:011006. doi:10.1115/1.4031855.
  • Hu, Q. L., B. Xiao, and P. Shi. 2015. Tracking control of uncertain Euler-Lagrange systems with finite-time convergence. International Journal of Robust and Nonlinear Control 25:3299–315. doi:10.1002/rnc.v25.17.
  • Hu, Q. L., J. Zhang, and M. I. Friswell. 2015. Finite-time coordinated attitude control for spacecraft formation flying under input saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 137:061012. doi:10.1115/1.4029467.
  • Iagnemma, K., S. Kang, H. Shibly, and S. Dubowsky. 2004. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics 20:921–7. doi:10.1109/TRO.2004.829462.
  • Jiang, Z. P., E. Lefeber, and H. Nijmeijer. 2001. Saturated stabilization and tracking of a nonholonomic mobile robot. Systems and Control Letters 42:327–32. doi:10.1016/S0167-6911(00)00104-3.
  • Jiang, Z. P., and H. Nijmeijer. 1999. A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic Control 44:265–79. doi:10.1109/9.746253.
  • Li, Z. J., Z. T. Chen, J. Fu, and C. Y. Sun. 2016b. Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and dead-zone inputs. Automatica 63:287–91. doi:10.1016/j.automatica.2015.10.036.
  • Li, H. Y., B. Chen, C. Lin, and Q. Zhou. 2009. Mean square exponential stability of stochastic fuzzy Hopfield neural networks with discrete and distributed time-varying delays. Neurocomputing 72:2017–23. doi:10.1016/j.neucom.2008.12.006.
  • Li, Y. K., L. Ding, and G. J. Liu. 2016. Attitude-based dynamic and kinematic models for wheels of mobile robot on deformable slope. Robotics and Autonomous Systems 75:161–75. doi:10.1016/j.robot.2015.10.006.
  • Li, H. Y., H. J. Gao, P. Shi, and X. D. Zhao. 2014a. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50:1825–34. doi:10.1016/j.automatica.2014.04.006.
  • Li, H. Y., X. J. Jing, H. K. Lam, and P. Shi. 2014b. Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Transactions on Cybernetics 44:1111–26. doi:10.1109/TCYB.2013.2279534.
  • Li, H. Y., P. Shi, D. Y. Yao, and L. G. Wu. 2016a. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64:133–42. doi:10.1016/j.automatica.2015.11.007.
  • Li, Y. M., S. C. Tong, Y. J. Liu, and T. S. Li. 2014c. Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Transactions on Fuzzy Systems 22:164–76. doi:10.1109/TFUZZ.2013.2249585.
  • Li, H. Y., J. Y. Yu, C. Hilton, and H. H. Liu. 2013. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Transactions on Industrial Electronics 60:3328–38. doi:10.1109/TIE.2012.2202354.
  • Li, Z. J., H. Z. Xiao, C. G. Yang, and Y. W. Zhao. 2015. Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45:1313–21.
  • Li, Z. J., Y. N. Zhang, and Y. P. Yang. 2010. Support vector machine optimal control for mobile wheeled inverted pendulums with unmodelled dynamics. Neurocomputing 73:2773–82. doi:10.1016/j.neucom.2010.04.009.
  • Liu, T. F., and Z. P. Jiang. 2014. Distributed nonlinear control of mobile autonomous multiagents. Automatica 50:1075–86. doi:10.1016/j.automatica.2014.02.023.
  • Liu, Y. J., and S. C. Tong. 2016. Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64:70–5. doi:10.1016/j.automatica.2015.10.034.
  • Niu, B., L. N. Liu, and Y. Y. Liu. 2016. Adaptive backstepping-based fuzzy tracking control scheme for output-constrained nonlinear switched lower triangular systems with time-delays. Neurocomputing 175:759–67. doi:10.1016/j.neucom.2015.11.006.
  • Niu, B., J. Zhu, Y. K. Su, H. Y. Li, and L. Li. 2013. Tracking control of uncertain switched nonlinear cascade systems: A nonlinear H∞ sliding mode control method. Nonlinear Dynamics 73:1803–12. doi:10.1007/s11071-013-0905-9.
  • Samson, C. 1995. Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Transactions on Automatic Control 40:64–77. doi:10.1109/9.362899.
  • Sun, J. J., and Z. J. Li. 2015. Development and implementation of a wheeled inverted pendulum vehicle using adaptive neural control with extreme learning machines. Cognitive Computation 7:740–52. doi:10.1007/s12559-015-9363-7.
  • Yan, Z., and J. Wang. 2014. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Transactions on Neural Networks and Learning Systems 25:457–69. doi:10.1109/TNNLS.2013.2275948.
  • Yang, C. G., Z. J. Li, R. X. Cui, and B. G. Xu. 2014. Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Transactions on Neural Networks and Learning Systems 25:2004–16. doi:10.1109/TNNLS.2014.2302475.
  • Yue, M., X. Wei, and Z. J. Li. 2015. Zero-dynamics-based adaptive sliding mode control for a wheeled inverted pendulum with parametric friction and uncertain dynamics compensation. Transactions of the Institute of Measurement and Control 37:91–9. doi:10.1177/0142331214532999.
  • Zhang, X. B., Y. C. Fang, and N. Sun. 2015. Visual servoing of mobile robots for posture stabilization: From theory to experiments. International Journal of Robust and Nonlinear Control 25:1–15.
  • Zhang, L. X., S. Wang, H. R. Karimi, and A. Jasra. 2015. Robust finite-time control of switched linear systems and application to a class of servomechanism systems. IEEE/ASME Transactions on Mechatronics 20:2476–85. doi:10.1109/TMECH.2014.2385796.
  • Zhang, L. X., and W. M. Xiang. 2016. Mode-identifying time estimation and switching-delay tolerant control for switched systems: An elementary time unit approach. Automatica 64:174–81. doi:10.1016/j.automatica.2015.11.010.
  • Zhang, L. X., S. L. Zhuang, and R. D. Braatz. 2016. Switched model predictive control of switched linear systems: Feasibility, Stability and Robustness. Automatica 67:8–21. doi:10.1016/j.automatica.2016.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.