2,122
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Determining the Natural Frequency of Cantilever Beams Using ANN and Heuristic Search

, , &

References

  • Allen, D. E., and T. M. Murra. 1993. Design criterion for vibrations due to walking. Engineering Journal - American Institute of Steel Construction 117–29. Illinois.
  • Alvis, S. R. 2001. An Experimental and Analytical Investigation of Floor Vibrations. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, April 2001, Blacksburg, Virginia.
  • Atashpaz-Gargari, E., and C. Lucas. 2007. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. Proceedings of IEEE congress on evolutionary computation, September 25-28, Singapore, pp 4661–67.
  • Atashpaz-Gargari, E., R. Rajabioun, F. Hashemzadeh, and F. L. Salmasi. 2009. A decentralized PID controller based on optimal shrinkage of Gershgorin bands and PID tuning using colonial competitive algorithm. International Journal of Innovative Computing, Information and Control (IJICIC) 5 10(A):3227–40.
  • Bağdatlı, S. M., E. Özkaya, H. R. Özygit, and A. Tekin. 2009. Non-linear vibrations of stepped beam system using artificial neural networks. Structural Engineering and Mechanics 33 (1):15–30. doi:10.12989/sem.2009.33.1.015.
  • Baker, J. E. 1987. Reducing bias and inefficiency in the selection algorithm, genetic algorithms and their applications. Proceedings of the Second International Conference on Genetic Algorithms (ICGA), Cambridge, Massachusetts, USA. July 28-31. pp 14–21.
  • Beavers, T. A. 1998. Fundamental Natural Frequency of Steel Joist-Supported Floors. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
  • Behnia, A., H. K. Chai, N. Ranjbar, and N. Behnia. 2013. Finite element analysis of the dynamic response of composite floors subjected to walking induced vibrations. Advances in Structural Engineering 6 (5):959–74. doi:10.1260/1369-4332.16.5.959.
  • Bishop, C. 2006. Pattern recognition and machine learning. Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA.
  • Chen, M.-H., S.-H. Chen, and P.-C. Chang. 2015. Imperial competitive algorithm with policy learning for the traveling salesman proble. Soft Computing. doi:10.1007/s00500-015-1886-z.
  • Clerc, M. 2012. Standard particle swarm optimisation, particle swarm central. Technical Report, Available online at: http://clerc.maurice.free.fr/pso/SPSOdescriptions.pdf, accessed 24 August 2014.
  • CSA-Standard. 1999. Canadian standards association, guide for floor vibrations (steel structures for buildings-limit state design). CSA Standard CAN 3-S16, pp 1–89.
  • Da Silva, J. G. S., P. C. :. G. Da S Vellasco, S. A. L. De Andrade, F. J. Da CPSoeiro, and R. N. Werneck. 2003. An evaluation of the dynamical performance of composite slabs. Computers and Structtures 81 (18–19):1905–13. doi:10.1016/S0045-7949(03)00210-4.
  • Dash, T. 2015. A study on intrusion detection using neural networks trained with evolutionary algorithms. Soft Computing. doi:10.1007/s00500-015-1967-z.
  • Ellis, B. R. 2001. Serviceability evaluation of floors induced by walking. The Structural Engineer 79 (21):30–36.
  • Gerami, M., A. Sivandi Pour, and A. Dalvand. 2012. Determination of the natural frequency of the moment connections steel beams for controlling vibration of floors by artificial neural networks. Modares Civil Engineering Journal (M.C.E.L) 12 (2):113–25.
  • Ghorban Pour, A. H., and M. Ghassemieh. 2009. Vertical vibration of composite floor by neural network analysis. Civil Engineering Infrastructures Journal (CEIJ) 43 (1):117–26.
  • Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
  • Hadzima-Nyarko, M., D. Morić, H. Draganić, and E. K. Nyarko. 2012. New direction based (fundamental) periods of RC frames using genetic algorithms. Proceedings: 15WCEE, Lisboa, Portugal, No. 2493.
  • Haykin, S. 1999. Neural networks: A comprehensive foundation, 2nd ed. Prentice Hall PTR Upper Saddle River, NJ, USA.
  • Holland, J. H. 1992. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: The University of Michigan Press. 1975. Reprinted by MIT Press, April 1992, NetLibrary, Inc
  • Housner, G. W. 1975. Dynamics of structures. R. W. Clough, and J. Penzien (eds.) New York: McGraw-Hill. wiley. doi:10.1002/eqe.4290040510
  • Hudson, M. J., and P. Reynolds. 2012. Implementation considerations for active vibration control in the design of floor structures. Engineering Structures 44:334–58. doi:10.1016/j.engstruct.2012.05.034.
  • Karlik, B., E. Özkaya, S. Aydin, and M. Pakdemirli. 1998. Vibrations of a beam-mass systems using artificial neural networks. Computers and Structures 69 (3):339–47. doi:10.1016/S0045-7949(98)00126-6.
  • Kazemi, M. A., F. Nazari, M. Karimi, S. Baghalian, M. A. Rahbarikahjogh, and A. M. Khodabandelou. 2011. Detection of multiple cracks in beams using particle swarm optimization and artificial neural network. 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur.
  • Kennedy, J. 1999. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, Vol. 3, p. 1938.
  • Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceedings of IEEE international conference on neural networks, pp 1942–48.
  • Kennedy, J., R. Eberhart, and Y. Shi. 2001. Swarm intelligence. San Francisco, CA, USA.: Morgan Kaufmann Publishers Inc.
  • Kennedy, J., and R. Mendes. 2002. Population structure and particle swarm performance. Proceedings of the 2002 Congress on Evolutionary Computation, CEC ’02, Honolulu, HI, USA, pp. 1671–76.
  • Kuru, L., A. Ozturk, E. Kuru, and S. Cobanli. 2016. Active power loss minimization in electric power systems through chaotic artificial bee colony algorithm. Technical Gazzete 23 (2):491–98.
  • Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar. 2006. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE T Evolut Comput 10 (3):281–95.
  • Liu, L., X. Lai, K. Song, and D. Lao. 2015. Intelligent prediction model based on genetic algorithm and support vector machine for evaluation of mining-induced building damage. Tehnical Gazzete 22 (3):743–53.
  • Marinaki, M., Y. Marinakis, and G. E. Stavroulakis. 2010. Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization. Expert System with Application 38 (6):6872–83. doi:10.1016/j.eswa.2010.12.037.
  • Martell, J. L., A. Ebrahimpour, and M. P. Schoen. 2005. Intelligent approach to floor vibration control. Proceedings: ASME 2005 International Mechanical Engineering Congress and Exposition, Dynamic Systems and Control, Parts A and B, Orlando, Florida, USA. ISBN: 0-7918-4216-9.
  • Middleton, C. J., and J. M. W. Brownjohn. 2010. Response of high frequency floors: A literature review. Engineering Structures 32:337–52. doi:10.1016/j.engstruct.2009.11.003.
  • Morley, L. J., and T. M. Murray. 1993. Predicting floor response due to human activity. Proceedings of the IABSE International Colloquium on Structural Serviceability of Buildings, Gothenburg, Sweden, pp. 297–302.
  • Murray, T. M., D. E. Allen, and E. E. Ungar. 1997. Steel design guide series 11: Floor vibrations due to human activity. Chicago, Illinois: American Institute of Steel Construction, Inc. (AISC).
  • Nikoo, M., F. Ramezani, M. Hadzima-Nyarko, E. K. Nyarko, and M. Nikoo. 2016. Flood-routing modeling with neural network optimized by social-based algorithm. Natural Hazards. doi:10.1007/s11069-016-2176-5.
  • Nikoo, M., F. Torabian Moghadam, and L. Sadowski. 2015. Prediction of concrete compressive strength by evolutionary artificial neural networks. Advances in Materials Science and Engineering. doi:10.1155/2015/849126.
  • Özkaya, E., and M. Pakdemirli. 1999. Nonlinear vibrations of a beam-mass system with both ends clamped. Journal of Sound and Vibration 221 (3):491–503. doi:10.1006/jsvi.1998.2003.
  • Przybylski, J. 2009. Non-linear vibrations of a beam with a pair of piezoceramic actuators. Engineering Structures 31 (11):2687–95. doi:10.1016/j.engstruct.2009.06.019.
  • Ramezani, F., M. Nikoo, and M. Nikoo. 2015. Artificial neural network weights optimization based on social-based algorithm to realize sediment over the river. Soft Computing 19:375–87. doi:10.1007/s00500-014-1258-0.
  • Sadowski, L., and M. Nikoo. 2014. Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Computing and Application 25:1627–38. doi:10.1007/s00521-014-1645-6.
  • S-H., L., J.-G. Hsieh, J.-Y. Chang, and C.-T. Lin. 2015. Training neural networks via simplified hybrid algorithm mixing Nelder–Mead and particle swarm optimization methods. Soft Computing 19:679–89. doi:10.1007/s00500-014-1292-y.
  • Sladki, M. J. 1999. Prediction of Floor Vibration Response using the Finite Element Method. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
  • Srinivas, M., and L. Patnaik. 1994. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE. T Syst Man Cyb 24 (4):656–67. doi:10.1109/21.286385.
  • Waszczyszyn, Z., and L. Ziemiański. 2001. Neural networks in mechanics of structures and materials – new results and prospects of applications. Computers and Structures 79 (22–25):2261–76. doi:10.1016/S0045-7949(01)00083-9.
  • Zambrano-Bigiarini, M., M. Clerc, and R. Rojas. 2013. Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements. IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, pp. 2337–2344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.