556
Views
13
CrossRef citations to date
0
Altmetric
Articles

Modeling of Trivalent Chromium Sorption onto Commercial Resins by Artificial Neural Network

ORCID Icon & ORCID Icon

References

  • Amani-Ghadim, A. R., and M. S. Seyed Dorraji. 2015. Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Applied Catalysis B: Environmental 163:539–46. doi:10.1016/j.apcatb.2014.08.020.
  • Dutta, S., S. A. Parsons, C. Bhattacharjee, S. Bandhyopadhyay, and S. Datta. 2010. Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface. Expert Systems with Applications 37 (12):8634–38. doi:10.1016/j.eswa.2010.06.090.
  • Ghaedi, A. M., M. Ghaedi, and P. Karami. 2015. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: Artificial neural network modeling. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138:789–99. doi:10.1016/j.saa.2014.11.019.
  • Ghaedi, M., A. Daneshfar, A. Ahmadi, and M. S. Momeni. 2015a. Artificial neural network-genetic algorithm based optimization for the adsorption of phenol red (PR) onto gold and titanium dioxide nanoparticles loaded on activated carbon. Journal of Industrial and Engineering Chemistry 21:587–98. doi:10.1016/j.jiec.2014.03.024.
  • Ghaedi, M., N. Zeinali, M. Maghsoudi, and M. K. Purkait. 2015b. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using nickel sulfide nanoparticle loaded on activated carbon: Kinetic and isotherm study. Journal of Dispersion Science and Technology 36 (9):1339–48. doi:10.1080/01932691.2014.964359.
  • Ghanbari, S., and B. Vaferi. 2015. Experimental and theoretical investigation of water removal from DMAZ liquid fuel by an adsorption process. Acta Astronautica 112:19–28. doi:10.1016/j.actaastro.2015.03.011.
  • Kalogirou, S. A. 2001. Artificial neural networks in renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews 5 (4):373–401. doi:10.1016/S1364-0321(01)00006-5.
  • Kalogirou, S. A., G. A. Florides, P. D. Pouloupatis, P. Christodoulides, and J. Joseph-Stylianou. 2015. Artificial neural networks for the generation of a conductivity map of the ground. Renewable Energy 77:400–07. doi:10.1016/j.renene.2014.12.033.
  • Kaya, Y., L. Kayci, and M. Uyar. 2015. Automatic identification of butterfly species based on local binary patterns and artificial neural network. Applied Soft Computing 28:132–37. doi:10.1016/j.asoc.2014.11.046.
  • Kumar, K. V., and K. Porkodi. 2009. Modelling the solid–Liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chemical Engineering Journal 148 (1):20–25. doi:10.1016/j.cej.2008.07.026.
  • Kuvendziev, S., M. Marinkovski, K. Lisichkov, and P. Paunović. 2015. Artificial neural network modeling of Cd (II) ions adsorption on nano-porous inorganic sorbents. In Nanoscience advances in CBRN agents detection, information and energy security, 469–76. Dordrecht: Springer.
  • Maghsoudi, M., M. Ghaedi, A. Zinali, A. M. Ghaedi, and M. H. Habibi. 2015. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134:1–9. doi:10.1016/j.saa.2014.06.106.
  • Sha, W., and K. L. Edwards. 2007. The use of artificial neural networks in materials science based research. Materials & Design 28 (6):1747–52. doi:10.1016/j.matdes.2007.02.009.
  • Shojaeimehr, T., F. Rahimpour, M. A. Khadivi, and M. Sadeghi. 2014. A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu 2+ adsorption optimization using light expended clay aggregate (LECA). Journal of Industrial and Engineering Chemistry 20 (3):870–80. doi:10.1016/j.jiec.2013.06.017.
  • Singha, B., N. Bar, and S. K. Das. 2014. The use of artificial neural networks (ANN) for modeling of adsorption of Cr (VI) ions. Desalination and Water Treatment 52 (1–3):415–25. doi:10.1080/19443994.2013.813682.
  • Sola, J., and J. Sevilla. 1997. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science 44 (3):1464–68. doi:10.1109/23.589532.
  • Solsvik, J., Z. Chao, and H. A. Jakobsen. 2015. Modeling and simulation of bubbling fluidized bed reactors using a dynamic one-dimensional two-fluid model: The sorption-enhanced steam–Methane reforming process. Advances in Engineering Software 80:156–73. doi:10.1016/j.advengsoft.2014.09.011.
  • Turan, N. G., B. Mesci, and O. Ozgonenel. 2011. The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice. Chemical Engineering Journal 171 (3):1091–97. doi:10.1016/j.cej.2011.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.