1,359
Views
6
CrossRef citations to date
0
Altmetric
Research Article

R-STDP Based Spiking Neural Network for Human Action Recognition

ORCID Icon & ORCID Icon
Pages 656-673 | Received 04 Jun 2019, Accepted 02 May 2020, Published online: 18 May 2020

References

  • Aggarwal, J. K., and M. S. Ryoo. 2011. Human activity analysis: A review. ACM Computing Surveys (CSUR) 43 (3):16. doi:10.1145/1922649.1922653.
  • Al-Berry, M. N., M. A. M. Salem, H. M. Ebeid, A. S. Hussein, and M. F. Tolba. 2016. Fusing directional wavelet local binary pattern and moments for human action recognition. IET Computer Vision 10 (2):153–162. doi: 10.1049/iet-cvi.2015.0087.
  • Berlin, S. J., and M. John. 2016, October. Human interaction recognition through deep learning network. In 2016 IEEE International Carnahan Conference on Security Technology (ICCST) (pp. 1–4). Orlando, FL: IEEE.
  • Blank, M., L. Gorelick, E. Shechtman, M. Irani, and R. Basri. 2005, October. Actions as space-time shapes. In Tenth IEEE International Conference on Computer Vision (ICCV’05) (Vols. 1, 2, pp. 1395–402). Beijing, China: IEEE.
  • Bohte, S. M., J. N. Kok, and H. La Poutre. 2002. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48 (1–4):17–37. doi:10.1016/S0925-2312(01)00658-0.
  • Cao, X.-Q., and Z.-Q. Liu. 2015. Type-2 fuzzy topic models for human action recognition. IEEE Transactions on Fuzzy Systems 23 (5):1581–93. doi:10.1109/TFUZZ.2014.2370678.
  • Cheng, J., H. Liu, F. Wang, H. Li, and C. Zhu. 2015. Silhouette analysis for human action recognition based on supervised temporal t-SNE and incremental learning. IEEE Transactions on Image Processing 24 (10):3203–17. doi:10.1109/TIP.2015.2441634.
  • Colque, R. V. H. M., C. Caetano, M. T. L. de Andrade, and W. R. Schwartz. 2017. Histograms of optical flow orientation and magnitude and entropy to detect anomalous events in videos. IEEE Transactions on Circuits and Systems for Video Technology 27 (3):673–82. doi:10.1109/TCSVT.2016.2637778.
  • Dalal, N., and B. Triggs. 2005, June. Histograms of oriented gradients for human detection. In International Conference on Computer Vision & Pattern Recognition (CVPR’05) (Vol. 1, pp. 886–93). San Diego, CA: IEEE Computer Society.
  • Dalal, N., B. Triggs, and C. Schmid. 2006, May. Human detection using oriented histograms of flow and appearance. In European Conference on Computer Vision (pp. 428–41). Springer, Berlin, Heidelberg.
  • Deng, Z., A. Vahdat, H. Hu, and G. Mori. 2016. Structure inference machines: Recurrent neural networks for analyzing relations in group activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4772–81). Las Vegas, NV.
  • Dhoble, K., N. Nuntalid, G. Indiveri, and N. Kasabov. 2012, June. Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning. In The 2012 International Joint Conference on Neural networks (IJCNN) (pp. 1–7). Brisbane, QLD, Australia: IEEE.
  • Du, W., Y. Wang, and Y. Qiao. 2018. Recurrent spatial-temporal attention network for action recognition in videos. IEEE Transactions on Image Processing 27 (3):1347–1360.
  • Escobar, M.-J., and P. Kornprobst. 2012. Action recognition via bio-inspired features: The richness of center–surround interaction. Computer Vision and Image Understanding 116 (5):593–605. doi:10.1016/j.cviu.2012.01.002.
  • Gao, Y., X. Xiang, N. Xiong, B. Huang, H. J. Lee, R. Alrifai, X. Jiang, and Z. Fang. 2018. Human action monitoring for healthcare based on deep learning. IEEE Access 6:52277–85. doi:10.1109/ACCESS.2018.2869790.
  • Jhuang, H., T. Serre, L. Wolf, and T. Poggio. 2007. A biologically inspired system for action recognition. In IEEE International Conference on Computer Vision, (p. 1). Rio de Janeiro,Brazil.
  • Kamel, A., B. Liu, P. Li, and B. Sheng. 2019. An investigation of 3D human pose estimation for learning Tai Chi: A human factor perspective. International Journal of Human–Computer Interaction 35 (4–5):427–39. doi:10.1080/10447318.2018.1543081.
  • Laptev, I., and B. Caputo. 2004, August. Recognizing human actions: A local SVM approach. In International conference on Pattern Recognition (pp. 32–36). Cambridge, UK: IEEE.
  • Liu, A.-A., Y.-T. Su, P.-P. Jia, Z. Gao, T. Hao, and Z.-X. Yang. 2015. Multiple/single-view human action recognition via part-induced multitask structural learning. IEEE Transactions on Cybernetics 45 (6):1194–208. doi:10.1109/TCYB.2014.2347057.
  • Liu, H., N. Shu, Q. Tang, and W. Zhang. 2018. Computational model based on neural network of visual cortex for human action recognition. IEEE Transactions on Neural Networks and Learning Systems 29 (5):1427–40. doi:10.1109/TNNLS.2017.2669522.
  • Liu, L., L. Shao, X. Li, and K. Lu. 2016. Learning spatio-temporal representations for action recognition: A genetic programming approach. IEEE Transactions on Cybernetics 46 (1):158–70. doi:10.1109/TCYB.2015.2399172.
  • Maity, S., D. Bhattacharjee, and A. Chakrabarti. 2017. A novel approach for human action recognition from silhouette images. IETE Journal of Research 63 (2):160–71. doi:10.1080/03772063.2016.1242383.
  • Meng, Y., Y. Jin, and J. Yin. 2011. Modeling activity-dependent plasticity in BCM spiking neural networks with application to human behavior recognition. IEEE Transactions on Neural Networks 22 (12):1952–66. doi:10.1109/TNN.2011.2171044.
  • Meng, Y., Y. Jin, J. Yin, and M. Conforth. 2010, July. Human activity detection using spiking neural networks regulated by a gene regulatory network. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–6). Barcelona, Spain: IEEE.
  • Moayedi, F., Z. Azimifar, and R. Boostani. 2016. Human action recognition: learning sparse basis units from trajectory subspace. Applied Artificial Intelligence 30 (4):297–317. doi:10.1080/08839514.2016.1169094.
  • Mozafari, M., S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and M. Ganjtabesh. 2018. First-spike-based visual categorization using reward-modulated STDP. IEEE Transactions on Neural Networks and Learning Systems (99):1–13. doi:10.1109/TNNLS.2018.2826721.
  • Ponulak, F., and A. Kasiński. 2010. Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Computation 22 (2):467–510. doi:10.1162/neco.2009.11-08-901.
  • Shan, Y., Z. Zhang, P. Yang, and K. Huang. 2015. Adaptive slice representation for human action classification. IEEE Transactions on Circuits and Systems for Video Technology 25 (10):1624–36. doi:10.1109/TCSVT.2014.2376136.
  • Vishwakarma, S., and A. Agrawal. 2013. A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer 29 (10):983–1009. doi:10.1007/s00371-012-0752-6.
  • Wang, H., and C. Schmid. 2013. Action recognition with improved trajectories. In Proceedings of the IEEE International Conference on Computer Vision. (pp. 3551–58). Sydney, NSW, Australia.
  • Xiang, Y., and J. Meng. 2018. A cross-layer based mapping for spiking neural network onto network on chip. International Journal of Parallel, Emergent and Distributed Systems 33 (5):526–44. doi:10.1080/17445760.2017.1399206.
  • Xu, K., X. Jiang, and T. Sun. 2017. Two-stream dictionary learning architecture for action recognition. IEEE Transactions on Circuits and Systems for Video Technology 27 (3):567–76. doi:10.1109/TCSVT.2017.2665359.
  • Xu, X., X. Jin, R. Yan, Q. Fang, and W. Lu. 2018. Visual pattern recognition using enhanced visual features and PSD-based learning rule. IEEE Transactions on Cognitive and Developmental Systems 10 (2):205–12. doi:10.1109/TCDS.2017.2769166.
  • Yao, L., Y. Liu, and S. Huang. 2016. Spatio-temporal information for human action recognition. EURASIP Journal on Image and Video Processing 2016 (1):39. doi:10.1186/s13640-016-0145-2.
  • Yu, Q., H. Tang, K. C. Tan, and H. Li. 2013. Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Transactions on Neural Networks and Learning Systems 24 (10):1539–52. doi:10.1109/TNNLS.2013.2245677.
  • Zhang, M., H. Qu, A. Belatreche, Y. Chen, and Z. Yi. 2018. A highly effective and robust membrane potential-driven supervised learning method for spiking neurons. IEEE Transactions on Neural Networks and Learning Systems (99):1–15. doi:10.1109/TNNLS.2018.2833077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.