2,063
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A Comparative Study of Artificial Intelligence Models for Predicting Interior Illuminance

, &

References

  • Abdallah, I., V. Dertimanis, H. Mylonas, K. Tatsis, E. Chatzi, N. Dervilis, K. Worden, and E. Maguire. 2018. Fault diagnosis of wind turbine structures using decision tree learning algorithms with big data. Safety and Reliability–Safe Societies in a Changing World 3053–61.
  • Aldawoud, A. 2013. Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy and Buildings 59:104–10. doi:10.1016/j.enbuild.2012.12.031.
  • Amasyali, K., and N. M. El-Gohary. 2018. A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews 81:1192–205. doi:10.1016/j.rser.2017.04.095.
  • Ayoub, M. 2020. A review on light transport algorithms and simulation tools to model daylighting inside buildings. Solar Energy 198:623–42. doi:10.1016/j.solener.2020.02.018.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Choi, J., T. Lee, E. Ahn, and G. Piao. 2014. Parametric louver design system based on direct solar radiation control performance. Journal of Asian Architecture and Building Engineering 13 (1):57–62. doi:10.3130/jaabe.13.57.
  • Choi, J., T.-K. Lee, E.-S. Ahn, G.-S. Piao, and J.-H. Lim. 2013. An evaluation system for parametric exterior louver designs including physical surroundings. Journal of the Architectural Institute of Korea Planning & Design 29 (10):91–98.
  • Chou, J.-S., and D.-K. Bui. 2014. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy and Buildings 82:437–46. doi:10.1016/j.enbuild.2014.07.036.
  • Chou, J.-S., C.-W. Lin, A.-D. Pham, and J.-Y. Shao. 2015. Optimized artificial intelligence models for predicting project award price. Automation in Construction 54:106–15. doi:10.1016/j.autcon.2015.02.006.
  • da Graça Carvalho, M. 2012. EU energy and climate change strategy. Energy 40 (1):19–22. doi:10.1016/j.energy.2012.01.012.
  • Davoodi, A., P. Johansson, T. Laike, and M. Aries. 2019. Current use of lighting simulation tools in Sweden. In 60th International Conference of Scandinavian Simulation Society, SIMS 2019. Västerås, Sweden: Linköping University Electronic Press. August 13- 16.
  • Dougherty, G. 2012. Pattern recognition and classification: An introduction. New York: Springer Science & Business Media.
  • Fang, Y., and S. Cho. 2019. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy 191:7–18. doi:10.1016/j.solener.2019.08.039.
  • Gill, A. S., J. D. Summers, and C. J. Turner. 2017. Comparing function structures and pruned function structures for market price prediction: An approach to benchmarking representation inferencing value. Ai Edam 31 (4):550–66.
  • Grobman, Y. J., I. G. Capeluto, and G. Auster. 2016. External shading in buildings: Comparative analysis of daylighting performance in static and kinetic operation scenarios. Architectural Science Review.
  • Henrique, B. M., V. A. Sobreiro, and H. Kimura. 2018. Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of Finance and Data Science 4 (3):183–201. doi:10.1016/j.jfds.2018.04.003.
  • Hu, Z., Z. Hu, and X. Du. 2019. One-class support vector machines with a bias constraint and its application in system reliability prediction. Artificial Intelligence for Engineering Design, Analysis and Manufacturing:Ai Edam 33 (3):346–358.
  • Jakubiec, J. A., and C. F. Reinhart. 2011. Integrating daylight and thermal simulations using rhinoceros 3d, daysim and energyplus. In Proceedings of Building Simulation.
  • Katsifaraki, A., B. Bueno, and T. E. Kuhn. 2017. A daylight optimized simulation-based shading controller for venetian blinds. Building and Environment 126:207–20. doi:10.1016/j.buildenv.2017.10.003.
  • Khaled, J. M., N. S. Alharbi, S. Kadaikunnan, A. S. Alobaidi, M. N. Al-Anbr, K. Gopinath, A. Aurmugam, M. Govindarajan, and B. Giovanni. 2017. Green synthesis of ag nanoparticles with anti-bacterial activity using the leaf extract of an african medicinal plant, Ipomoea Asarifolia (Convolvulaceae). Journal of Cluster Science 28 (5):3009–19. doi:10.1007/s10876-017-1271-4.
  • Khoroshiltseva, M., D. Slanzi, and I. Poli. 2016. A pareto-based multi-objective optimization algorithm to design energy-efficient shading devices. Applied Energy 184:1400–10. doi:10.1016/j.apenergy.2016.05.015.
  • Kim, C.-H., and K.-S. Kim. 2019a. Development of sky luminance and daylight illuminance prediction methods for lighting energy saving in office buildings. Energies 12 (4):592. doi:10.3390/en12040592.
  • Kim, G.-H., and S.-H. Kim. 2019b. Variable selection for artificial neural networks with applications for stock price prediction. Applied Artificial Intelligence 33 (1):54–67. doi:10.1080/08839514.2018.1525850.
  • Kirimtat, A., B. K. Koyunbaba, I. Chatzikonstantinou, and S. Sariyildiz. 2016a. Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews 53:23–49. doi:10.1016/j.rser.2015.08.020.
  • Kirimtat, A., B. K. Koyunbaba, I. Chatzikonstantinou, S. Sariyildiz, and P. N. Suganthan. 2016b. Multi-Objective Optimization for Shading Devices in Buildings by Using Evolutionary Algorithms. In 2016 IEEE Congress on Evolutionary Computation (CEC), 3917–24. Vancouver, BC, Canada: IEEE.
  • Kirimtat, A., O. Krejcar, B. Ekici, and M. Fatih Tasgetiren. 2019. Multi-objective energy and daylight optimization of amorphous shading devices in buildings. Solar Energy 185:100–11. doi:10.1016/j.solener.2019.04.048.
  • Li, L., M. Qu, and S. Peng. 2016. Performance evaluation of building integrated solar thermal shading system: building energy consumption and daylight provision. Energy and Buildings 113:189–201. doi:10.1016/j.enbuild.2015.12.040.
  • Loh, W.-Y. 2014. Classification and regression tree methods. Wiley StatsRef: Statistics Reference Online.
  • Lorenz, C.-L., M. Packianather, A. B. Spaeth, and C. B. De Souza. 2018. Artificial Neural Network-Based Modelling for Daylight Evaluations. In Proceedings of the symposium on simulation for architecture and urban design, 2. Delft, The Netherlands: Society for Computer Simulation International.
  • Machairas, V., A. Tsangrassoulis, and K. Axarli. 2014. Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews 31:101–12. doi:10.1016/j.rser.2013.11.036.
  • Mahdavinejad, M., S. Matoor, N. Feyzmand, and A. Doroodgar. 2012. Horizontal distribution of illuminance with reference to Window Wall Ratio (Wwr) in office buildings in hot and dry climate, case of Iran, Tehran. In Applied mechanics and materials, ed. Prof. Xi Peng Xu, vol. 110, 72–76. Switzerland: Trans Tech Publisher.
  • Manzan, M. 2014. Genetic optimization of external fixed shading devices. Energy and Buildings 72:431–40. doi:10.1016/j.enbuild.2014.01.007.
  • Nasrollahi, N., and E. Shokri. 2016. Daylight illuminance in urban environments for visual comfort and energy performance. Renewable and Sustainable Energy Reviews 66:861–74. doi:10.1016/j.rser.2016.08.052.
  • Nguyen, A.-T., S. Reiter, and P. Rigo. 2014. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy 113:1043–58. doi:10.1016/j.apenergy.2013.08.061.
  • PS, M. G. 2019. Performance evaluation of best feature subsets for crop yield prediction using machine learning algorithms. Applied Artificial Intelligence 33 (7):621–42. doi:10.1080/08839514.2019.1592343.
  • Schardl, T. B. 2016. Performance engineering of multicore software: developing a science of fast code for the Post-Moore Era. Massachusetts, Cambridge: Doctoral dissertation, Massachusetts Institute of Technology.
  • Skarning, G., C. Jensen, C. A. Hviid, and S. Svendsen. 2017. The effect of dynamic solar shading on energy, daylighting and thermal comfort in a nearly zero-energy loft room in Rome and Copenhagen. Energy and Buildings 135:302–11. doi:10.1016/j.enbuild.2016.11.053.
  • Su, Z., and W. Yan. 2015. A fast genetic algorithm for solving architectural design optimization problems. Ai Edam 29 (4):457–69.
  • Summers, J. D., C. Eckert, and A. K. Goel. 2017. Function in engineering: Benchmarking representations and models. Ai Edam 31 (4):401–12.
  • Tregenza, P., and J. Mardaljevic. 2018. Daylighting buildings: Standards and the needs of the designer. Lighting Research & Technology 50 (1):63–79. doi:10.1177/1477153517740611.
  • Tregenza, P. R. 2017. Uncertainty in daylight calculations. Lighting Research & Technology 49 (7):829–44. doi:10.1177/1477153516653786.
  • Tzempelikos, A., and Y.-C. Chan. 2016. Estimating detailed optical properties of window shades from basic available data and modeling implications on daylighting and visual comfort. Energy and Buildings 126:396–407. doi:10.1016/j.enbuild.2016.05.038.
  • Valladares-Rendón, L. G., G. Schmid, and S.-L. Lo. 2017. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. Energy and Buildings 140:458–79. doi:10.1016/j.enbuild.2016.12.073.
  • Wagdy, A., A. Sherif, H. Sabry, R. Arafa, and I. Mashaly. 2017. Daylighting simulation for the configuration of external sun-breakers on south oriented windows of hospital patient rooms under a clear desert sky. Solar Energy 149:164–75. doi:10.1016/j.solener.2017.04.009.
  • Wan, K. K. W., D. H. W. Li, D. Liu, and J. C. Lam. 2011. Future trends of building heating and cooling loads and energy consumption in different climates. Building and Environment 46 (1):223–34. doi:10.1016/j.buildenv.2010.07.016.
  • Weerasuriya, A. U. 2014. Predicting thermal performance of different roof systems by using decision tree method. Engineer 47 (3):27–37. doi:10.4038/engineer.v47i3.6892.
  • Yadav, A. K., and S. S. Chandel. 2014. Solar radiation prediction using artificial neural network techniques: A review. Renewable and Sustainable Energy Reviews 33:772–81. doi:10.1016/j.rser.2013.08.055.
  • Yao, J. 2014. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Building and Environment 71:24–32. doi:10.1016/j.buildenv.2013.09.011.
  • Yun, G., D. Y. Park, and K. S. Kim. 2017. Appropriate activation threshold of the external blind for visual comfort and lighting energy saving in different climate conditions. Building and Environment 113:247–66. doi:10.1016/j.buildenv.2016.11.021.
  • Zani, A., M. Andaloro, L. Deblasio, P. Ruttico, and A. G. Mainini. 2017. Computational design and parametric optimization approach with genetic algorithms of an innovative concrete shading device system. Procedia Engineering 180:1473–83. doi:10.1016/j.proeng.2017.04.310.
  • Zhou, S., and D. Liu. 2015. Prediction of daylighting and energy performance using artificial neural network and support vector machine. Am. J. Civ. Eng. Archit 3 (3A):1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.