3,435
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Novel Method for SoH Prediction of Batteries Based on Stacked LSTM with Quick Charge Data

ORCID Icon, ORCID Icon & ORCID Icon
Pages 421-439 | Received 28 Jul 2020, Accepted 05 Mar 2021, Published online: 24 Mar 2021

References

  • 2011 – Hamburg. Accessed February 24 2020.
  • Advantages of electric cars – Top benefits of EVs. energy sage, Smarter energy decisions. Accessed February 24, 2020. https://www.energysage.com/electric-vehicles/advantages-of-evs/.
  • Andre, D., A. Nuhic, T. Soczka-Guth, and D. U. Sauer. 2013. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Engineering Applications of Artificial Intelligence 26 (3):951–61. doi:10.1016/j.engappai.2012.09.013.
  • Bak, T., and S. Lee. 2019. Accurate estimation of battery SOH and RUL based on a progressive LSTM with a time compensated entropy index. Annual Conference of the PHM Society, 11 (1).
  • Bonfitto, A., E. Ezemobi, N. Amati, S. Feraco, A. Tonoli, and S. Hegde. 2019. State of health estimation of lithium batteries for automotive applications with artificial neural networks. 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE),  Politecnico di Torino, Lingott21-25o. doi:10.23919/eeta.2019.8804567
  • Chaoui, H., and C. C. Ibe Ekeocha. 2017. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Transactions on Vehicular Technology 66 (10):8773–83. doi:10.1109/tvt.2017.2715333.
  • Chen, Z., X. Song, R. Xiao, J. Shen, and X. Xia. 2018. State of health estimation for lithium-ion battery based on long short term memory networks. DEStech transactions on environment. Energy and Earth Sciences, (ICEEE)Swinburne Univ Technol, Melbourne, Australia, 21–25.
  • Dong, H., X. Jin, Y. Lou, and C. Wang. 2014. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. Journal of Power Sources 271:114–23. doi:10.1016/j.jpowsour.2014.07.176.
  • European Commission, Hamburg – European Green Capital 2011, https://ec.europa.eu/environment/europeangreencapital/wp-content/uploads/2011/04/Doku-Umwelthauptstadt-engl-web.pdf, Accessed, March15, 2021
  • Galford, C., “AEP Ohio to build car charging stations as part of columbus Smart City initiative”. Daily Energy Insider. Accessed February 24 2020.
  • Jakobsen, K. H. 2014. Connecting copenhagen’ is the world’s best Smart City project. State of Green. Accessed February 24, 2020. https://stateofgreen.com/en/partners/city-of-copenhagen/news/connecting-copenhagen-is-the-worlds-best-smart-city-project/.
  • Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv Preprint arXiv:1412.6980.
  • Kobie. 2020. As electric car sales soar, the industry faces a cobalt crisis. Wired, Condé Nast Britain . Accessed February 24, 2020. https://www.wired.co.uk/article/cobalt-battery-evs-shortage.
  • Li, X., L. Zhang, Z. Wang, and P. Dong. 2019. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. Journal of Energy Storage 21:510–18. doi:10.1016/j.est.2018.12.011.
  • Liu, D., J. Pang, J. Zhou, Y. Peng, and M. Pecht. 2013. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability 53 (6):832–39. doi:10.1016/j.microrel.2013.03.010.
  • Ma, Z., R. Yang, and Z. Wang. 2019. A novel data-model fusion state-of-health estimation approach for lithium-ion batteries. Applied Energy 237:836–47. doi:10.1016/j.apenergy.2018.12.071.
  • O’kane, S. 2020. Jaguar will pause I-pace production because of battery shortage. The Verge, Vox Media. Accessed February 24, 2020.https://www.ey.com/en_lu/automotive-transportation/why-the-ev-battery-life-cycle-is-more-important-than-the-battery-life.
  • Ren, L., L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang. 2018. Remaining useful life prediction for lithium-ion battery: A deep learning approach. IEEE Access 6:50587–98. doi:10.1109/ACCESS.2018.2858856.
  • Roy, P., M. Md., S. Akther, and M. Kader. (2015). Importance and proper way of maintaining a battery.
  • Saha, B., and K. Goebel (2007). Battery data set. NASA AMES prognostics data repository.
  • Sherstinsky, A. 2020. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D. Nonlinear Phenomena 404:132306. doi:10.1016/j.physd.2019.132306.
  • Smart Dubai. 2021. Smart Dubai, smart Dubai office. Accessed February 24, 2020. https://2021.smartdubai.ae/.
  • Smart Dublin, Smart Dublin. 2020. Accessed February 24, 2020. https://smartdublin.ie/.
  • Talha, M., F. Asghar, and S. H. Kim. 2019. A neural network-based robust online SOC and SOH estimation for sealed lead–acid batteries in renewable systems. Arabian Journal for Science and Engineering 44 (3):1869–81. doi:10.1007/s13369-018-3200-8.
  • Tang, X., C. Zou, K. Yao, G. Chen, B. Liu, Z. He, and F. Gao. 2018. A fast estimation algorithm for lithium-ion battery state of health. Journal of Power Sources 396:453–58. doi:10.1016/j.jpowsour.2018.06.036.
  • Yang, D., X. Zhang, R. Pan, Y. Wang, and Z. Chen. 2018a. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. Journal of Power Sources 384:387–95. doi:10.1016/j.jpowsour.2018.03.015.
  • Yang, D., Y. Wang, R. Pan, R. Chen, and Z. Chen. 2017. A neural network based state-of-health estimation of lithium-ion battery in electric vehicles. Energy Procedia 105:2059–64. doi:10.1016/j.egypro.2017.03.583.
  • Yu, Y., X. Si, C. Hu, and J. Zhang. 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation 31 (7):1235–70. doi:10.1162/neco_a_01199.
  • Zhang, J., J. Hou, and Z. Zhang. 2020. Online state-of-health estimation for the lithium-ion battery based on an LSTM neural network with attention mechanism. In 2020 Chinese Control And Decision Conference (CCDC).  Empark Grand Hotel Anhui, Hefei, China: IEEE, August, 1334–39.
  • Zhang, Q., L. T. Yang, Z. Chen, and P. Li. 2018a. A survey on deep learning for big data. Information Fusion 42:146–57. doi:10.1016/j.inffus.2017.10.006.
  • Zhang, Y., R. Xiong, H. He, and M. G. Pecht. 2018b. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology 67 (7):5695–705. doi:10.1109/tvt.2018.2805189.
  • Zhang, Y., R. Xiong, H. He, and Z. Liu. 2017. A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China. doi:10.1109/phm.2017.8079316
  • Zhao, G., G. Zhang, Y. Liu, B. Zhang, and C. Hu (2017). Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine. 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA. doi:10.1109/icphm.2017.7998298

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.