2,642
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Comprehensive Literature Review of Application of Artificial Intelligence in Functional Magnetic Resonance Imaging for Disease Diagnosis

ORCID Icon, , , , , & show all
Pages 1420-1438 | Received 01 Apr 2021, Accepted 13 Sep 2021, Published online: 31 Oct 2021

References

  • Aghdam, M. A., A. Sharifi, and M. M. Pedram. 2018. Combination of rsfMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. Journal of Digital Imaging 31 (6):895–903. doi:https://doi.org/10.1007/s10278-018-0093-8.
  • Aghdam, M. A., A. Sharifi, and M. M. Pedram. 2019. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. Journal of Digital Imaging 32 (6):899–918. doi:https://doi.org/10.1007/s10278-019-00196-1.
  • Al-sharoa, E., M. Al-khassaweneh, and S. Aviyente. 2018. Tensor based temporal and multilayer community detection for studying brain dynamics during resting state fMRI. IEEE Transactions on Biomedical Engineering 66 (3):695709.
  • Amaro, E., and G. J. Barker. 2006. Study design in fMRI: Basic principles. Brain and Cognition 60 (3):220–32. doi:https://doi.org/10.1016/j.bandc.2005.11.009.
  • Bi, X., X. Zhao, H. Huang, D. Chen, and M. Yuliang. 2020. Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cognitive Computation 12 (3):513–27.
  • Bi, X.-A., H. Wu, Y. Xie, L. Zhang, X. Luo, and Y. Fu. 2020. The exploration of Parkinson’s disease: A multi-modal data analysis of resting functional magnetic resonance imaging and gene data. Brain Imaging and Behavior 1–11.
  • Bruening, D. E., S. Dharssi, R. M. Lazar, R. S. Marshall, and I. Asllani. 2015. Improved partial volume correction method for detecting brain activation in disease using Arterial Spin Labeling (ASL) fMRI. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 5441–5444. IEEE.
  • Cohen, J. D., N. Daw, B. Engelhardt, U. Hasson, K. Li, Y. Niv, K. A. Norman, J. Pillow, P. J. Ramadge, N. B. Turk-Browne et al. 2017. Computational approaches to fMRI analysis. Nature Neuroscience 20(3):304–13. doi:https://doi.org/10.1038/nn.4499.
  • Dachena, C., S. Casu, M. B. Lodi, A. Fanti, and G. Mazzarella. 2020. Application of MRI, fMRI and cognitive data for Alzheimer’s disease detection. In 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Sweden, pp. 1–4. IEEE.
  • de Pinho Queirós, G., G. Coelho, S. Wang, Y. Zhang, T. Zhan, P. Phillips, Y. D. Zhang, G. Liu, S. Lu, and X. Wu. 2016. Pathological brain detection by artificial intelligence in magnetic resonance imaging scanning (invited review). Progress in Electromagnetics Research 156:105–33. https://doi.org/10.2528/PIER16070801.
  • Di Martino, A., C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts, J. S. Anderson, M. Assaf, S. Y. Bookheimer, M. Dapretto et al. 2014. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry 19 (6):659–67. doi:https://doi.org/10.1038/mp.2013.78.
  • Duc, N. T., S. Ryu, M. N. I. Qureshi, M. Choi, K. H. Lee, and B. Lee. 2020. 3D-deep learning based automatic diagnosis of Alzheimer’s disease with joint MMSE prediction using resting-state fMRI. Neuroinformatics 18 (1):71–86. doi:https://doi.org/10.1007/s12021-019-09419-w.
  • Ford, J., F. Makedon, C. Owen, S. Johnson, and A. J. Saykin. 1998. Stimulus tracking in functional magnetic resonance imaging (fMRI). In Proceedings of the sixth ACM international conference on Multimedia (MULTIMEDIA ‘98), Association for Computing Machinery, New York, NY, USA, 445–54. DOI: https://doi.org/10.1145/290747.290819
  • Frackowiak R. S. 2004 Jan 26. Human brain function. Elsevier.
  • Garg, H. 2017. Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information 8 (4):162. doi:https://doi.org/10.3390/info8040162.
  • Goodfellow, I., J. Pouget-Abadie, M. Mirza, X. Bing, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems, 2672–80.
  • Guo, H., and Y. Zhang. 2020. Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer’s disease. IEEE Access 8:115383–92. doi:https://doi.org/10.1109/ACCESS.2020.3003424.
  • Hanson, E. A., E. Westlye, and A. Lundervold. 2014. A PCA-based thresholding strategy for group studies of brain connectivity-with applications to resting-state fMRI. 2014 Southwest Symposium on Image Analysis and Interpretation, California, USA, IEEE.
  • Hijazi, S., R. Kumar, and C. Rowen. 2015. Using convolutional neural networks for image recognition, 1–12. San Jose, CA, USA: Cadence Design Systems Inc.
  • Holzinger, A. 2016. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics 3 (2):119–31. doi:https://doi.org/10.1007/s40708-016-0042-6.
  • Huang, Z.-A., R. Liu, and K. C. Tan. 2020. Multi-Task learning for efficient diagnosis of ASD and ADHD using Resting-State fMRI data. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, USA. IEEE.
  • Jmour, N., S. Zayen, and A. Abdelkrim. 2018. Convolutional neural networks for image classification. 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, IEEE.
  • Khazaee, A., A. Ebrahimzadeh, and A. Babajani-Feremi. 2016. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior 10 (3):799–817. doi:https://doi.org/10.1007/s11682-015-9448-7.
  • Kwong, K. K., J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, USA 89:5675–79.
  • Last Accessed, March 31, 2021. http://www.eiu.com/industry/healthcare
  • Last Accessed, March 31, 2021. https://anhir.grand-challenge.org.
  • Last Accessed, March 31, 2021. https://grand-challenge.org.
  • Last Accessed, March 31, 2021. https://grandchallenges.org/#/map.
  • Last Accessed, March 31, 2021. https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. nature 521 (7553):436–44. doi:https://doi.org/10.1038/nature14539.
  • Li, W., Y. Zhao, X. Chen, Y. Xiao, Y. Qin et al. 2018. Detecting Alzheimer’s disease on small dataset: A knowledge transfer perspective. IEEE Journal of Biomedical and Health Informatics 23(3):1234–42. doi:https://doi.org/10.1109/JBHI.2018.2839771.
  • Lindquist, M. A., Y. D. Zhang, Z. Dong, W. Sh, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-Mesa, et al. 2020. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion December1 64:149–87.
  • Liu, T. T. 2016. Noise contributions to the fMRI signal: An overview. NeuroImage 143:141–51. doi:https://doi.org/10.1016/j.neuroimage.2016.09.008.
  • Mahmoudi, A. H., S. Takerkart, F. Regragui, D. Boussaoud, and A. Brovelli. 2012. Multivoxel pattern analysis for fMRI data: A review. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine 2012:14. Article ID 961257. doi:https://doi.org/10.1155/2012/961257.
  • Manokar, N. V., et al. 2012. Wavelets based decomposition and classification of diseased fMRI brain images for inter-racial disease types of Alzheimer’s Vs tumors using SOFM and enhancement by LVQ neural networks. 2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing, Himachal Pradesh, India, IEEE.
  • Mohsen, H., E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, A.-B. M. Salem et al. 2018. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal 3(1):68–71. doi:https://doi.org/10.1016/j.fcij.2017.12.001.
  • Neehal, A. H., et al. 2020. Prediction of Parkinson’s disease by analyzing fMRI data and using supervised learning. 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh. IEEE.
  • Ogawa, S., D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, et al. 1992. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, USA 89:5951–55.
  • Oh, K., Y.-C. Chung, K. W. Kim, W.-S. Kim, and O. Il-Seok. 2019. Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Scientific Reports 9 (1):1–16. doi:https://doi.org/10.1038/s41598-019-54548-6.
  • Pannese, E. 2015. Neurocytology: Fine structure of neurons, nerve processes, and neuroglial cells. Neurocytology, Springer.
  • Petersen, R. C., P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst, D. J. Harvey, C. R. Jack, W. J. Jagust, L. M. Shaw, A. W. Toga et al. 2010. Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization. Neurology 74(3):201–09. doi:https://doi.org/10.1212/WNL.0b013e3181cb3e25.
  • Rajpurkar, P., J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017).
  • Ramzan, F., M. U. Ghani Khan, A. Rehmat, S. Iqbal, T. Saba, A. Rehman, and Z. Mehmood. 2020. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting state fMRI and residual neural networks. Journal of Medical Systems 44 (2):37. doi:https://doi.org/10.1007/s10916-019-1475-2.
  • Razzak, M. I., S. Naz, and A. Zaib. 2018. Deep learning for medical image processing: Overview, challenges and the future, 323–50. Springer, Cham: Classification in BioApps.
  • Sheng, J., M. Shao, Q. Zhang, R. Zhou, L. Wang, and Y. Xin. 2020. Alzheimer’s disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning. Scientific Reports 10 (1):1–10. doi:https://doi.org/10.1038/s41598-020-62378-0.
  • Shereena, V. B., and G. Raju. 2016. Literature review of fMRI image processing techniques. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 1473–76.
  • Shi, J., and B. Liu. 2020. Stage detection of mild cognitive impairment via fMRI using Hilbert Huang transform based classification framework. Medical Physics 47 (7):2902–15. doi:https://doi.org/10.1002/mp.14183.
  • Somkuwar, A., and S. Bhargava, Noise reduction techniques in medical imaging data-A review, 2nd International Conference on Mechanical, Electronics and Mechatronics Engineering (ICMEME’2013), June 17-18, 2013 London (UK).
  • Toga, A. W., and J.-C. Mazziotta, Eds. 1996. Brain mapping: The methods. Academic Press.
  • Zhao, H., O. Gallo, I. Frosio, J. Kautz, et al. 2016. Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging 3 (1):47–57. doi:https://doi.org/10.1109/TCI.2016.2644865.