782
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Multiobjective Discrete Grey Wolf Optimization Approach for Transactional and QoS-driven Web Services Composition

ORCID Icon &

References

  • Abbassi, I., M. Graiet, W. Gaaloul, and N. B. Hadj-Alouane (2015). Genetic-based approach for ats and sla-aware web services composition. In International Conference on Web Information Systems Engineering, pp. 369–83. Springer, Miami, FL, USA.
  • Ai, L., and M. Tang (2008). Qos-based web service composition accommodating inter-service dependencies using minimal-conflict hill-climbing repair genetic algorithm. In 2008 IEEE Fourth International Conference on eScience, pp. 119–26. IEEE, Indianapolis, IN, USA.
  • Alonso, G., F. Casati, H. Kuno, and V. Machiraju. 2004. Web services. In Web services 2004: Data-centric systems and applications, 123-149. Berlin: Springer.
  • Altan, A., S. Karasu, and E. Zio. 2021. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing 100:106996. doi:https://doi.org/10.1016/j.asoc.2020.106996.
  • Badawy, H., E. Emary, M. Yassien, and M. Fathi (2018). Discrete grey wolf optimization for shredded document reconstruction. In International Conference on Advanced Intelligent Systems and Informatics, pp. 284–93. Springer, Cairo, Egypt.
  • Bhiri, S., O. Perrin, and C. Godart (2005). Ensuring required failure atomicity of composite web services. In Proceedings of the 14th international conference on World Wide Web, pp. 138–47. ACM, Chiba, Japan.
  • Bhiri, S., O. Perrin, and C. Godart (2006). Extending workflow patterns with transactional dependencies to define reliable composite web services. In Advanced Int’l Conference on Telecommunications and Int’l Conference on Internet and Web Applications and Services (AICT-ICIW’06), pp. 145–145. IEEE, Guadeloupe, French Caribbean.
  • Blei, D. M., A. Y. Ng, and M. I. Jordan. January 2003. Latent dirichlet allocation. Journal of Machine Learning Research 3:993–1022.
  • Canfora, G., M. Di Penta, R. Esposito, and M. Villani (2005). An approach for qos-aware service composition based on genetic algorithms. In Proceedings of the 7th annual conference on Genetic and evolutionary computation, pp. 1069–75. ACM, Washington DC, USA.
  • Chandra, M., A. Agrawal, A. Kishor, and R. Niyogi (2016). Web service selection with global constraints using modified gray wolf optimizer. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1989–94. IEEE, Jaipur, India.
  • Chattopadhyay, S., A. Banerjee, and N. Banerjee. 2017. A fast and scalable mechanism for web service composition. ACM Transactions on the Web (TWEB) 11 (4):1–36. doi:https://doi.org/10.1145/3098884.
  • Coello, C. A. C., and M. R. Sierra. 1999. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations, In CINVESTAV-IPN (Evolutionary Computation Group); Departamento de Ingeniería Eléctrica, Sección de Computación, Evolutionary computation Citeseer, pp. 125-147, MÉXICO.
  • Cremene, M., M. Suciu, D. Pallez, and D. Dumitrescu. 2016. Comparative analysis of multi-objective evolutionary algorithms for qos-aware web service composition. Applied Soft Computing 39:124–39. doi:https://doi.org/10.1016/j.asoc.2015.11.012.
  • Da Silva, A. S., H. Ma, and M. Zhang. 2016. Genetic programming for qos-aware web service composition and selection. Soft Computing 20 (10):3851–67. doi:https://doi.org/10.1007/s00500-016-2096-z.
  • Da Silva, A. S., E. Moshi, H. Ma, and S. Hartmann (2017). A qos-aware web service composition approach based on genetic programming and graph databases. In International Conference on Database and Expert Systems Applications, pp. 37–44. Springer, Lyon, France.
  • Deb, K. 2001. Multi-objective optimization using evolutionary algorithms, vol. 16. John Wiley & Sons, Chichester, UK.
  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6 (2):182–97. doi:https://doi.org/10.1109/4235.996017.
  • Ding, Z., J. Liu, Y. Sun, C. Jiang, and M. Zhou. 2015. A transaction and qos-aware service selection approach based on genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45 (7):1035–46. doi:https://doi.org/10.1109/TSMC.2015.2396001.
  • El Hadad, J., M. Manouvrier, and M. Rukoz. 2010. Tqos: Transactional and qos-aware selection algorithm for automatic web service composition. IEEE Transactions on Services Computing 3 (1):73–85. doi:https://doi.org/10.1109/TSC.2010.5.
  • Gavvala, S. K., C. Jatoth, G. Gangadharan, and R. Buyya. 2019. Qos-aware cloud service composition using eagle strategy. Future Generation Computer Systems 90:273–90. doi:https://doi.org/10.1016/j.future.2018.07.062.
  • Graiet, M., I. Abbassi, M. Kmimech, and W. Gaaloul. 2016. A genetic-based adaptive approach for reliable and efficient service composition. IEEE Systems Journal 12 (2):1644–54. doi:https://doi.org/10.1109/JSYST.2016.2612641.
  • Imed, A., and M. Graiet. 2017. An automatic configuration algorithm for reliable and efficient composite services. IEEE Transactions on Network and Service Management 15 (1):416–29. doi:https://doi.org/10.1109/TNSM.2017.2785360.
  • Jalal, S., D. K. Yadav, and C. S. Negi. 2019. Web service discovery with incorporation of web services clustering. International Journal of Computers and Applications 1–12. doi:https://doi.org/10.1080/1206212X.2019.1698131.
  • Jatoth, C., G. Gangadharan, and R. Buyya. 2015. Computational intelligence based qos-aware web service composition: A systematic literature review. IEEE Transactions on Services Computing 10 (3):475–92. doi:https://doi.org/10.1109/TSC.2015.2473840.
  • Jordan, D., J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, and A. Guızar. 2007. Web services business process execution language version 2.0. OASIS Standard 11 (120):5.
  • Karasu, S., and Z. Saraç. 2020. Classification of power quality disturbances by 2d-riesz transform, multi-objective grey wolf optimizer and machine learning methods. Digital Signal Processing 101:102711. doi:https://doi.org/10.1016/j.dsp.2020.102711.
  • Karimi, M. B., A. Isazadeh, and A. M. Rahmani. 2017. Qos-aware service composition in cloud computing using data mining techniques and genetic algorithm. The Journal of Supercomputing 73 (4):1387–415. doi:https://doi.org/10.1007/s11227-016-1814-8.
  • Klein, A., F. Ishikawa, and S. Honiden (2011). Efficient heuristic approach with improved time complexity for qos-aware service composition. In 2011 IEEE International Conference on Web Services, pp. 436–43. IEEE, Washington, DC, USA.
  • Li, L., C. Liu, and J. Wang (2007). Deriving transactional properties of compositeweb services. In IEEE International Conference on Web Services (ICWS 2007), pp. 631–38. IEEE, Salt Lake City, UT, USA.
  • Li, L., L. Sun, J. Guo, J. Qi, B. Xu, and S. Li. 2017. Modified discrete grey wolf optimizer algorithm for multilevel image thresholding. Computational Intelligence and Neuroscience 2017.
  • Liu, A., Q. Li, L. Huang, and M. Xiao. 2009. Facts: A framework for fault-tolerant composition of transactional web services. IEEE Transactions on Services Computing 3 (1):46–59. doi:https://doi.org/10.1109/TSC.2009.28.
  • Liu, Z., X. Xue, J. Shen, and W. Li. 2013. Web service dynamic composition based on decomposition of global qos constraints. The International Journal of Advanced Manufacturing Technology 69 (9–12):2247–60. doi:https://doi.org/10.1007/s00170-013-5204-6.
  • Loper, E., and S. Bird. 2002. Nltk: The natural language toolkit. arXiv preprint cs/0205028, Cornell University.
  • Lu, C., S. Xiao, X. Li, and L. Gao. 2016. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software 99: 161-176. doi: https://doi.org/10.1016/j.advengsoft.2016.06.004
  • Martin, B., J. Marot, and S. Bourennane (2018). Improved discrete grey wolf optimizer. In 2018 26th European Signal Processing Conference (EUSIPCO), pp. 494–98. IEEE, Rome, Italy.
  • Mehrotra, S., R. Rastogi, H. F. Korth, and A. Silberschatz (1992). A transaction model for multidatabase systems. In International Conference on Distributed Computing Systems, pp. 56–63. IEEE, Yokohama, Japan.
  • Miller, G. A. 1998. WordNet: An electronic lexical database. Cambridge, MA: MIT Press.
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Advances in Engineering Software 69:46–61. doi:https://doi.org/10.1016/j.advengsoft.2013.12.007.
  • Musser, J. (2005). Programmableweb.
  • Ren, X., W. Zhang, L. Bao, J. Song, S. Wang, R. Cao, and X. Wang (2021). Deepqsc: A gnn and attention mechanism-based framework for qos-aware service composition. In 2021 International Conference on Service Science (ICSS), pp. 76–83. IEEE, Xi'an, China.
  • Sharma, P., S. Sundaram, M. Sharma, A. Sharma, and D. Gupta. 2019. Diagnosis of Parkinson’s disease using modified grey wolf optimization. Cognitive Systems Research 54:100–15. doi:https://doi.org/10.1016/j.cogsys.2018.12.002.
  • Sierra, M. R., and C. A. C. Coello (2004). A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical Report of CINVESTAV-IPN.
  • Statovci-Halimi, B., and A. Halimi. 2004. Qos management through service level agreements: A short overview. e & i Elektrotechnik und Informationstechnik 121 (6):243–46. doi:https://doi.org/10.1007/BF03055357.
  • Van der Aalst, W., A. Ter Hofstede, B. Kiepuszewski, and A. Barros. 2003. Workflow Patterns. Distributed and Parallel Databases 14 (1):5–51.doi:https://doi.org/10.1023/A:1022883727209.
  • Wada, H., J. Suzuki, Y. Yamano, and K. Oba. 2011. E3: A multiobjective optimization framework for sla-aware service composition. IEEE Transactions on Services Computing 5 (3):358–72. doi:https://doi.org/10.1109/TSC.2011.6.
  • Wang, D., H. Huang, and C. Xie (2014). A novel adaptive web service selection algorithm based on ant colony optimization for dynamic web service composition. In International Conference on Algorithms and Architectures for Parallel Processing, pp. 391–99. Springer, Dalian, China.
  • Wang, H., D. Yang, Q. Yu, and Y. Tao. 2018. Integrating modified cuckoo algorithm and creditability evaluation for qos-aware service composition. Knowledge-Based Systems 140:64–81. doi:https://doi.org/10.1016/j.knosys.2017.10.027.
  • Wu, Q., F. Ishikawa, Q. Zhu, and D. H. Shin. 2016. Qos-aware multigranularity service composition: Modeling and optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (11):1565–77. doi:https://doi.org/10.1109/TSMC.2015.2503384.
  • Wu, Q., and Q. Zhu. 2013. Transactional and qos-aware dynamic service composition based on ant colony optimization. Future Generation Computer Systems 29 (5):1112–19. doi:https://doi.org/10.1016/j.future.2012.12.010.
  • Wu, Z., and M. Palmer (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics, pp. 133–38, Las Cruces, New Mexico, USA.
  • Yan, L., Y. Mei, H. Ma, and M. Zhang (2016). Evolutionary web service composition: A graph-based memetic algorithm. In 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 201–08. IEEE, Vancouver, BC, Canada.
  • Yao, Y., and H. Chen (2009). Qos-aware service composition using nsga-ii1. In Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 358–63. ACM, Seoul, Korea.
  • Yin, H., C. Zhang, B. Zhang, Y. Guo, and T. Liu. 2014. A hybrid multiobjective discrete particle swarm optimization algorithm for a sla-aware service composition problem. Mathematical Problems in Engineering 2014:14. doi:https://doi.org/10.1155/2014/252934.
  • Zeng, L., B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. 2004. Qos-aware middleware for web services composition. IEEE Transactions on Software Engineering 30 (5):311–27. doi:https://doi.org/10.1109/TSE.2004.11.
  • Zhang, W., C. K. Chang, T. Feng, and H.-Y. Jiang (2010). Qos-based dynamic web service composition with ant colony optimization. In 2010 IEEE 34th Annual Computer Software and Applications Conference, pp. 493–502. IEEE, Seoul, Korea (South).
  • Zhao, X., B. Song, P. Huang, Z. Wen, J. Weng, and Y. Fan. 2012. An improved discrete immune optimization algorithm based on pso for qos-driven web service composition. Applied Soft Computing 12 (8):2208–16. doi:https://doi.org/10.1016/j.asoc.2012.03.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.