1,715
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Strip Steel Defect Classification Using the Improved GAN and EfficientNet

ORCID Icon, ORCID Icon, , , , & show all
Pages 1887-1904 | Received 05 Aug 2020, Accepted 14 Oct 2021, Published online: 28 Oct 2021

References

  • Aghdam, S. R., and E. Amid. 2012. A fast method of steel surface defect detection using decision trees applied to LBP based features. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 1447–52.
  • Faghih-Roohi, S., S. Hajizadeh, A. Nunez, R. Babuska, and B. D. Schutter 2016. Deep convolutional neural networks for detection of rail surface defects. In 2016 International Joint Conference on Neural Networks (IJCNN), 2584–89. Vancouver, Canada.
  • Frid-Adar, M., E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. 2018. Synthetic data augmentation using GAN for improved liver lesion classification. In IEEE 15th International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 289–93.
  • Ghorai, S., A. Mukherjee, M. Gangadaran, and P. K. Dutta. 2013. Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement 62 (3):612–21. doi:https://doi.org/10.1109/TIM.2012.2218677.
  • Goodfellow, I., J. Pouget-Abadie, M. Mirza, Xu, B., D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. In 27th International Conference on Neural Information Processing Systems (NIPS), 2672–80. Montreal, Canada.
  • Guan, S. Q. 2015. Strip steel defect detection based on saliency map construction using Gaussian pyramid decomposition. ISIJ International 55 (9):1950–55. doi:https://doi.org/10.2355/isijinternational.ISIJINT-2015-041.
  • Haselmann, M., and D. P. Gruber. 2019. Pixel-wise defect detection by CNNs without manually labeled training data. Applied Artificial Intelligence 33 (6):548–66. doi:https://doi.org/10.1080/08839514.2019.1583862.
  • He, Y., K. Song, Q. Meng, and Y. Yan. 2020. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement 69 (4):1493–504. doi:https://doi.org/10.1109/TIM.2019.2915404.
  • Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, and H. Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv Preprint ArXiv:1704.04861.
  • Kiani, R., A. Keshavarzi, and M. Bohlouli. 2020. Detection of thin boundaries between different types of anomalies in outlier detection using enhanced neural networks. Applied Artificial Intelligence 34 (5):345–77. doi:https://doi.org/10.1080/08839514.2020.1722933.
  • Lin, T. Y., P. Goyal, R. Girshick, K. He, and P. Dollar. 2020. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2):318–27. doi:https://doi.org/10.1109/TPAMI.2018.2858826.
  • Mao, Q., H. Y. Lee, H. Y. Tseng, S. Ma, and M. H. Yang. 2019. Mode seeking generative adversarial networks for diverse image synthesis. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:https://doi.org/10.1109/CVPR.2019.00152.
  • Meister, S., N. Möller, J. Stüve, R.M. Groves 2021. Synthetic image data augmentation for fibre layup inspection processes: Techniques to enhance the data set. Journal of Intelligent Manufacturing 32:1767–89. doi:https://doi.org/10.1007/s10845-021-01738-7.
  • Meister, S., M. Wermes, J. Stüve, and R. M. Groves. 2021. Cross-evaluation of a parallel operating SVM – CNN classifier for reliable internal decision-making processes in composite inspection. Journal of Manufacturing Systems 60:620–39. ISSN 0278-6125. doi:https://doi.org/10.1016/j.jmsy.2021.07.022.
  • Mirza, M., and S. Osindero. 2014. Conditional generative adversarial nets. ArXiv Preprint ArXiv:1411.1784.
  • Neogi, N., D. K. Mohanta, and P. K. Dutta. 2014. Review of vision-based steel surface inspection systems. Eurasip Journal on Image and Video Processing 50:1–19.
  • Feng, X., X. Gao, and L. Luo 2021. X-SDD: A New Benchmark for hot rolled steel strip surface defects detection. Symmetry 13 (4):706. doi:https://doi.org/10.3390/sym13040706.
  • Park, J. K., B. K. Kwon, J. H. Park, and D. J. Kang. 2016. Machine learning-based imaging system for surface defect inspection. International Journal of Precision Engineering and Manufacturing-Green Technology 3 (3):303–10. doi:https://doi.org/10.1007/s40684-016-0039-x.
  • Perez, L., and J. Wang. 2017. The effectiveness of data augmentation in image classification using deep learning. ArXiv Preprint ArXiv:1712.04621.
  • Radford, A., L. Metz, and S. Chintala 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In International Conference on Learning Representations (ICLR). San Juan, Puerto Rico.
  • Sharifzadeh, M., S. Alirezaee, R. Amirfattahi, and S. Sadri 2008. Detection of steel defect using the image processing algorithms. In 2008 IEEE International Multitopic Conference (INMIC), 125–27. Karachi, Pakistan.
  • Tan, M., and Q. V. Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (ICML), The Long Beach Convention & Entertainment Center in Long Beach, California, 6105–14.
  • Wang, L. Z., and S. Q. Guan. 2017. Strip steel surface defect recognition based on deep learning. Journal of Xi’an Polytechnic University 31 (5):669–74.
  • Xuan, Q., Z. Chen, Y. Liu, H. Huang, G. Bao, and D. Zhang. 2019. Multiview generative adversarial network and its application in pearl classification. IEEE Transactions on Industrial Electronics 66 (10):8244–52. doi:https://doi.org/10.1109/TIE.2018.2885684.
  • Yang, F., H. Fan, P. Chu, and E. Blasch 2019. Clustered object detection in aerial images In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 8310–19. Seoul, Korea.
  • Yi, C., and J. Cho. 2020. Improving the performance of multimedia pedestrian classification with images synthesized using a deep convolutional generative adversarial network. Multimedia Tools and Applications. doi:https://doi.org/10.1007/S11042-019-08545-6.
  • Youkachen, S., M. Ruchanurucks, T. Phatrapomnant, and H. Kaneko. 2019. Defect segmentation of hot-rolled steel strip surface by using convolutional auto-encoder and conventional image processing. In 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Kasetsart University, Bangkok, Thailand, 1–5.
  • Zhang, J., H. Wang, Y. Tian, and K. Liu. 2020. An accurate fuzzy measure-based detection method for various types of defects on strip steel surfaces. Computers in Industry 122:103231. doi:https://doi.org/10.1016/j.compind.2020.103231.
  • Zhang, X., X. Zhou, M. Lin, and J. Sun. 2018. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6848–56. Utah, USA.
  • Zhuang, B., C. Shen, M. Tan, L. Liu, and I. Reid 2019. Structured binary neural networks for accurate image classification and semantic segmentation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 413–22. California, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.