6,108
Views
28
CrossRef citations to date
0
Altmetric
Review

Systematic Review of Computing Approaches for Breast Cancer Detection Based Computer Aided Diagnosis Using Mammogram Images

, , , ORCID Icon, , ORCID Icon & show all
Pages 2157-2203 | Received 27 Mar 2021, Accepted 28 Oct 2021, Published online: 02 Dec 2021

References

  • Agnes, A., J. Anitha, S. I. A. Pandian, and J. D. Peter, et al. 2020. Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). Journal of medical systems 44 (1):1–9. doi:https://doi.org/10.1007/s10916-019-1494-z.
  • Ahmed, L., M. M. Iqbal, H. Aldabbas, S. Khalid, Y. Saleem, and S. Saeed, et al. 2020. Images data practices for semantic segmentation of breast cancer using deep neural network. Journal of Ambient Intelligence and Humanized Computing 1–17. https://doi.org/https://doi.org/10.1007/s12652-020-01680-1
  • Al-Antari, M. A., M. A. Al-Masni, M.-T. Choi, S.-M. Han, and T.-S. Kim, et al. 2018. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. International journal of medical informatics 117:44–54. doi:https://doi.org/10.1016/j.ijmedinf.2018.06.003.
  • Al-Antari, M. A., S.-M. Han, and T.-S. Kim. 2020. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Computer methods and programs in biomedicine 196:105584. doi:https://doi.org/10.1016/j.cmpb.2020.105584.
  • AlSalman, H., and N. Almutairi. 2019. IDSS: An Intelligent Decision Support System for Breast Cancer Diagnosis. In 2019 2nd International Conference on Computer Applications & Information Security, 1–6, Riyadh, Saudi Arabia.
  • Arafa, E.-S. A., A. H. Asad, and H. A. Hefny. 2019. Machine Learning Algorithms for Breast Cancer CADx System in the Mammography. In 2019 15th International Computer Engineering Conference (ICENCO), 210–15, Giza , Egypt.
  • Arora, D. S., R. Vig, and M. Hanmandlu. 2019. Mammogram image enhancement using entropy and CLAHE based intuitionistic fuzzy method. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 24–29.
  • Arora, R., P. K. Rai, and B. Raman. 2020. Deep feature–based automatic classification of mammograms. Medical & biological engineering & computing, 58(6):1199-1211.
  • Asri, H., H. Mousannif, H. Al Moatassime, and T. Noel, et al. 2016. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science 83:1064–69. doi:https://doi.org/10.1016/j.procs.2016.04.224.
  • Aziz, H. W., S. Saeed, S. Rathore, and M. Rafique, et al. 2018. Automated breast cancer detection using machine learning techniques by extracting different feature extracting strategies. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 327–31.
  • Bagchi, S., K. G. Tay, A. Huong, and S. K. Debnath, et al. 2020. Image processing and machine learning techniques used in computer-aided detection system for mammogram screening-A review. International Journal of Electrical and Computer Engineering 10 (3):2336.
  • Berbar, M. A. 2018. Hybrid methods for feature extraction for breast masses classification. Egyptian informatics journal 19 (1):63–73. doi:https://doi.org/10.1016/j.eij.2017.08.001.
  • Boudraa, S., A. Melouah, and H. F. Merouani. 2020. Improving mass discrimination in mammogram-CAD system using texture information and super-resolution reconstruction. Evolving Systems 11 (4):697–706. doi:https://doi.org/10.1007/s12530-019-09322-4.
  • Boumaraf, S., X. Liu, C. Ferkous, and X. Ma, et al. 2020. A new computer-aided diagnosis system with modified genetic feature selection for bi-RADS classification of breast masses in mammograms. BioMed Research International 2020. doi: https://doi.org/10.1155/2020/7695207.
  • Chaieb, R., and K. Kalti. 2019. Feature subset selection for classification of malignant and benign breast masses in digital mammography. Pattern Analysis and Applications 22 (3):803–29. doi:https://doi.org/10.1007/s10044-018-0760-x.
  • Charan, S., M. J. Khan, and K. Khurshid. 2018. Breast cancer detection in mammograms using convolutional neural network. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 1–5.
  • Chen, L. C., S. Wang, and P. Chen. 2020. A Novel Multi-Scale Adversarial Networks for Precise Segmentation of X-Ray Breast Mass. IEEE Access, 8, 103772–81.
  • Chen, X., A. Zargari, A. B. Hollingsworth, H. Liu, B. Zheng, and Y. Qiu, et al. 2019. Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer. Computer methods and programs in biomedicine 179:104995. doi:https://doi.org/10.1016/j.cmpb.2019.104995.
  • Cheng, Y., Y. Gao, L. Xie, X. Xie, and W. Lin, et al. 2020. Spatial Enhanced Rotation Aware Network for Breast Mass Segmentation in Digital Mammogram. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2020.2978009
  • Dallali, A., A. Slimen, S. El Khediri, and Y. Khemili, et al. 2018. Detection of lesion in mammograms. In 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet. Tunisia, 479–83.
  • Das, P., and A. Das. 2019. A fast and automated segmentation method for detection of masses using folded kernel based fuzzy c-means clustering algorithm. Applied Soft Computing 85:105775. doi:https://doi.org/10.1016/j.asoc.2019.105775.
  • Dash, M. R., and B. Majhi. 2020. Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach. Biomedical Signal Processing and Control 59:101912. doi:https://doi.org/10.1016/j.bspc.2020.101912.
  • Esener, İ. I., S. Ergin, and T. Yüksel. 2018. A novel multistage system for the detection and removal of pectoral muscles in mammograms. Turkish Journal of Electrical Engineering & Computer Sciences 26 (1):35–49. doi:https://doi.org/10.3906/elk-1703-272.
  • Farhan, A. H., and M. Y. Kamil. 2020. Texture Analysis of Breast Cancer via LBP, HOG, and GLCM techniques. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 928, 072098. 7. DOI: https://doi.org/10.1088/1757-899X/928/7/072098
  • Gao. 2018. SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis. Computerized Medical Imaging and Graphics 70: 53–62. doi:https://doi.org/10.1016/j.compmedimag.2018.09.004.
  • Gardezi, S. J. S., A. Elazab, B. Lei, and T. Wang, et al. 2019. Breast cancer detection and diagnosis using mammographic data: Systematic review. Journal of medical Internet research 21 (7):e14464. doi:https://doi.org/10.2196/14464.
  • George, M. J., and D. A. S. Dhas. 2017. Preprocessing filters for mammogram images: a review. In 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Mallasamudram, India, 1–7.
  • Geweid, G. G., and M. A. Abdallah. 2019. A novel approach for breast cancer investigation and recognition using M-level set-based optimization functions. IEEE Access, 7, 136343–57.
  • Gherghout, Y., Y. Tlili, and L. Souici. 2019. Classification of breast mass in mammography using anisotropic diffusion filter by selecting and aggregating morphological and textural features. Evolving Systems 12, 273–302.
  • Gong, X., Z. Yang, D. Wang, Y. Qi, Y. Guo, and Y. Ma, et al. 2019. Breast density analysis based on glandular tissue segmentation and mixed feature extraction. Multimedia Tools and Applications 78 (22):31185–214. doi:https://doi.org/10.1007/s11042-019-07917-2.
  • Gordillo, N., E. Montseny, and P. Sobrevilla. 2013. State of the art survey on MRI brain tumor segmentation. Magnetic resonance imaging 31 (8):1426–38. doi:https://doi.org/10.1016/j.mri.2013.05.002.
  • Gou, S. C., J. Wang, and F.-Y. Wang. 2019. Simultaneous segmentation and classification of mass region from mammograms using a mixed-supervision guided deep model. IEEE Signal Processing Letters, 27, 196–200.
  • Goudarzi, M., and K. Maghooli. 2018. Extraction of fuzzy rules at different concept levels related to image features of mammography for diagnosis of breast cancer. Biocybernetics and Biomedical Engineering 38 (4):1004–14. doi:https://doi.org/10.1016/j.bbe.2018.09.002.
  • Gu, S., Y. Chen, F. Sheng, T. Zhan, and Y. Chen, et al. 2019. A novel method for breast mass segmentation: from superpixel to subpixel segmentation. Machine Vision and Applications 30 (7–8):1111–22. doi:https://doi.org/10.1007/s00138-019-01020-0.
  • Gupta, D., and R. Anand. 2017. A hybrid edge-based segmentation approach for ultrasound medical images. Biomedical Signal Processing and Control 31:116–26. doi:https://doi.org/10.1016/j.bspc.2016.06.012.
  • Hagos, Y. B., A. G. Mérida, and J. Teuwen. 2018. Improving breast cancer detection using symmetry information with deep learning. In Danail Stoyanov et al. Image Analysis for Moving Organ, Breast, and Thoracic Images, 90–97. Springer.
  • Han, F. 2015. Texture feature analysis for computer-aided diagnosis on pulmonary nodules. Journal of digital imaging 28 (1):99–115. doi:https://doi.org/10.1007/s10278-014-9718-8.
  • Hazarika, M., and L. B. Mahanta. 2018. A novel region growing based method to remove pectoral muscle from MLO mammogram images. In Advances in Electronics, Communication and Computing, 307–16. Singapore: Springer.
  • He, K., G. Gkioxari, P. Dollár, and R. Girschik, et al. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2961–69. 22–29 October 2017.
  • Hussein, J., M. A. Burhanuddin, M. A. Mohammed, M. Elhoseny, and B. Garcia-Zapirain, et al. 2021. Fully automatic segmentation of gynaecological abnormality using a new viola–jones model. Computers, Materials & Continua 66 (3):3161–82. doi:https://doi.org/10.32604/cmc.2021.012691.
  • Indra, M. M. 2020. Multilevel Tetrolet transform based breast cancer classifier and diagnosis system for healthcare applications. Journal of Ambient Intelligence and Humanized Computing 12, 3969–3978.
  • Irfan, R., A. A. Almazroi, H. T. Rauf, R. Damaševičius, E. A. Nasr, and A. E. Abdelgawad, et al. 2021. Dilated semantic segmentation for breast ultrasonic lesion detection using parallel feature fusion. Diagnostics 11 (7). doi: https://doi.org/10.3390/diagnostics11071212.
  • Jiao, Z., X. Gao, Y. Wang, and J. Li, et al. 2018. A parasitic metric learning net for breast mass classification based on mammography. Pattern Recognition 75:292–301. doi:https://doi.org/10.1016/j.patcog.2017.07.008.
  • Jiménez-Gaona, Y., M. J. Rodríguez-Álvarez, and V. Lakshminarayanan. 2020. Deep-Learning-Based Computer-Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences 10 (22):8298. doi:https://doi.org/10.3390/app10228298.
  • Jung. 2018. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. PloS one 13(9):e0203355. doi:https://doi.org/10.1371/journal.pone.0203355.
  • Junior, G. B., S. V. Da Rocha, J. D. de Almeida, A. C. de Paiva, A. C. Silva, and M. Gattass, et al. 2019. Breast cancer detection in mammography using spatial diversity, geostatistics, and concave geometry. Multimedia Tools and Applications 78 (10):13005–31. doi:https://doi.org/10.1007/s11042-018-6259-z.
  • Kadry, S., R. Damasevicius, D. Taniar, V. Rajinikanth, and I. A. Lawal, et al. 2021. Extraction of tumour in breast MRI using joint thresholding and segmentation - A study. 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021, Chennai, India. https://doi.org/10.1109/ICBSII51839.2021.9445152.
  • Karthiga, R., K. Narasimhan, and G. Usha. 2019. Breast Cancer Diagnosis using Curvelet and Regional Features. In 2019 International Conference on Computer Communication and Informatics (ICCCI) Coimbatore, India, 1–5.
  • Kaur, P., G. Singh, and P. Kaur. 2019. Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Informatics in Medicine Unlocked 16:100151. doi:https://doi.org/10.1016/j.imu.2019.01.001.
  • Khan, H. N., A. R. Shahid, B. Raza, A. H. Dar, and H. Alquhayz, et al. 2019. Multi-view feature fusion based four views model for mammogram classification using convolutional neural network. IEEE Access, 7, 165724–33.
  • Kim-Soon, N., A. I. Abdulmaged, and S. A. Mostafa. 2021. A framework for analyzing the relationships between cancer patient satisfaction, nurse care, patient attitude, and nurse attitude in healthcare systems. J Ambient Intell Human Comput. doi:https://doi.org/10.1007/s12652-020-02888-x.
  • Kou, G., P. Yang, Y. Peng, F. Xiao, Y. Chen, and F. E. Alsaadi, et al. 2020. Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods. Applied Soft Computing 86:105836.
  • Lahoura, V., H. Singh, A. Aggarwal, B. Sharma, M. A. Mohammed, R. Damaševičius, S. Kadry, and K. Cengiz, et al. 2021. Cloud Computing-Based Framework for Breast Cancer Diagnosis Using Extreme Learning Machine. Diagnostics 11 (2):241. doi:https://doi.org/10.3390/diagnostics11020241.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi:https://doi.org/10.1038/nature14539.
  • Li, H., R. Mukundan, and S. Boyd. 2021. Novel Texture Feature Descriptors Based on Multi-Fractal Analysis and LBP for Classifying Breast Density in Mammograms. Journal of Imaging 7 (10):205. doi:https://doi.org/10.3390/jimaging7100205.
  • Li, H., S. Zhuang, D.-A. Li, J. Zhao, and Y. Ma, et al. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomedical Signal Processing and Control 51:347–54. doi:https://doi.org/10.1016/j.bspc.2019.02.017.
  • Li, L. M., J. Wang, F. Wu, T. Liu, and Y. Pan, et al. 2014. A survey of MRI-based brain tumor segmentation methods. Tsinghua science and technology 19 (6):578–95. doi:https://doi.org/10.1109/TST.2014.6961028.
  • Li, S., M. Dong, G. Du, and X. Mu, et al. 2019. Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access, 7, 59037–47.
  • Li, Y., L. Zhang, H. Chen, and L. Cheng, et al. 2020. Mass detection in mammograms by bilateral analysis using convolution neural network. Computer Methods and Programs in Biomedicine 195:105518. doi:https://doi.org/10.1016/j.cmpb.2020.105518.
  • Lin, G., A. Milan, C. Shen, and I. Reid, et al. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 1925–34. 21–26 July 2017.
  • Liu, Q., Z. Liu, S. Yong, K. Jia, and N. Razmjooy, et al. 2020. Computer-aided breast cancer diagnosis based on image segmentation and interval analysis. Automatika 61 (3):496–506. doi:https://doi.org/10.1080/00051144.2020.1785784.
  • Liu, X., L. Song, S. Liu, and Y. Zhang, et al. 2021. A review of deep-learning-based medical image segmentation methods. Sustainability 13 (3):1224. doi:https://doi.org/10.3390/su13031224.
  • Liu, X., T. Zhu, L. Zhai, and J. Liu, et al. 2019. Mass classification of benign and malignant with a new twin support vector machine joint {l_ {2, 1}}-norm. International Journal of Machine Learning and Cybernetics 10 (1):155–71. doi:https://doi.org/10.1007/s13042-017-0706-4.
  • Loizidou, K., G. Skouroumouni, C. Nikolaou, and C. Pitris, et al. 2020. An automated breast micro-calcification detection and classification technique using temporal subtraction of mammograms. IEEE Access, 8, 52785–95.
  • Mabrouk, M. S., H. M. Afify, and S. Y. Marzouk. 2019. Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques. Ain Shams Engineering Journal 10 (3):517–27. doi:https://doi.org/10.1016/j.asej.2019.01.009.
  • Massafra, R., S. Bove, V. Lorusso, A. Biafora, M. C. Comes, V. Didonna, and D. La Forgia, et al. 2021. Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images. Diagnostics 11 (4):684. doi:https://doi.org/10.3390/diagnostics11040684.
  • Matos, E. F. 2019. Diagnosis of breast tissue in mammography images based local feature descriptors. Multimedia Tools and Applications 78 (10):12961–86. doi:https://doi.org/10.1007/s11042-018-6390-x.
  • Melekoodappattu, J. G., and P. S. Subbian. 2019. A hybridized ELM for automatic micro calcification detection in mammogram images based on multi-scale features. Journal of medical systems 43 (7):1–12. doi:https://doi.org/10.1007/s10916-019-1316-3.
  • Memon, A. R., E. Wang, J. Hu, J. Egger, and X. Chen, et al. 2020. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert review of medical devices 17 (4):345–56. doi:https://doi.org/10.1080/17434440.2020.1736040.
  • Mohamed, A. A., W. A. Berg, H. Peng, Y. Luo, R. C. Jankowitz, and S. Wu, et al. 2018. A deep learning method for classifying mammographic breast density categories. Medical physics 45 (1):314–21. doi:https://doi.org/10.1002/mp.12683.
  • Mohamed, B. A., and N. M. Salem. 2018. Automatic classification of masses from digital mammograms. In 2018 35th National Radio Science Conference (NRSC), Cairo, Egypt, 495–502.
  • Mohammed, M. A., B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim, M. K. Abd Ghani, and S. A. Mostafa, et al. 2018. Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers & Electrical Engineering 70:871–82. doi:https://doi.org/10.1016/j.compeleceng.2018.01.033.
  • Mohanty, A. K., M. R. Senapati, and S. K. Lenka. 2013. An improved data mining technique for classification and detection of breast cancer from mammograms. Neural computing & applications 22 (S1):303–10. doi:https://doi.org/10.1007/s00521-012-0834-4.
  • Mohanty, F., S. Rup, B. Dash, B. Majhi, and M. Swamy, et al. 2019a. A computer-aided diagnosis system using Tchebichef features and improved grey wolf optimized extreme learning machine. Applied Intelligence 49 (3):983–1001. doi:https://doi.org/10.1007/s10489-018-1294-z.
  • Mohanty, F., S. Rup, B. Dash, B. Majhi, and M. Swamy, et al. 2019b. Digital mammogram classification using 2D-BDWT and GLCM features with FOA-based feature selection approach. Neural computing & applications 1–15. doi:https://doi.org/10.1007/s00521-019-04095-y.
  • Mohanty, F., S. Rup, B. Dash, B. Majhi, and M. Swamy, et al. 2019c. Mammogram classification using contourlet features with forest optimization-based feature selection approach. Multimedia Tools and Applications 78 (10):12805–34. doi:https://doi.org/10.1007/s11042-018-5804-0.
  • Mughal, A., N. Muhammad, and M. Sharif. 2019. Adaptive hysteresis thresholding segmentation technique for localizing the breast masses in the curve stitching domain. International journal of medical informatics 126:26–34. doi:https://doi.org/10.1016/j.ijmedinf.2019.02.001.
  • Muhammad, M. N., M. Sharif, A. Rehman, and T. Saba, et al. 2018. Removal of pectoral muscle based on topographic map and shape-shifting silhouette. BMC cancer 18 (1):1–14.
  • Murtaza, G. 2019. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artificial Intelligence Review 53, 1655–1720.
  • Nayak, D. R., R. Dash, B. Majhi, R. B. Pachori, and Y. Zhang, et al. 2020. A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer. Biomedical Signal Processing and Control 58:101860. doi:https://doi.org/10.1016/j.bspc.2020.101860.
  • Obaid, O. I., M. A. Mohammed, M. K. A. Ghani, A. Mostafa, and F. Taha, et al. 2018. Evaluating the performance of machine learning techniques in the classification of Wisconsin Breast Cancer. International Journal of Engineering & Technology 7 (4.36):160–66.
  • Oza, P., P. Sharma, and S. Patel 2021. Machine Learning Applications for Computer-Aided Medical Diagnostics. In Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security, Ghaziabad, India, Singapore: Springer, 377–92. 3–4 October.
  • Oza, P., P. Sharma, S. Patel, and A. Bruno, et al. 2021. A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms. Journal of Imaging 7 (9):190. doi:https://doi.org/10.3390/jimaging7090190.
  • Pashoutan, S., S. B. Shokouhi, and M. Pashoutan. 2017. Automatic breast tumor classification using a level set method and feature extraction in mammography. In 2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 1–6.
  • Patil, D. D., and S. G. Deore. 2013. Medical image segmentation: a review. International Journal of Computer Science and Mobile Computing 2 (1):22–27.
  • Patil, R. S., and N. Biradar. 2020. Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evolutionary Intelligence 14, 1459–1474.
  • Pavan, A. L., A. Vacavant, A. F. Alves, A. P. Trindade, and D. R. de Pina, et al. 2019. Automatic identification and extraction of pectoral muscle in digital mammography. In World Congress on Medical Physics and Biomedical Engineering 2018, Springer, Prague, Czech Republic, 151–54.
  • Peng, J., C. Bao, C. Hu, X. Wang, W. Jian, and W. Liu, et al. 2020. Automated mammographic mass detection using deformable convolution and multiscale features. Medical & biological engineering & computing 58 (7):1405–17. doi:https://doi.org/10.1007/s11517-020-02170-4.
  • Pillai, R., P. Oza, and P. Sharma 2020. Review of machine learning techniques in health care. In Proceedings of the ICRIC 2019, Jammu, India, Cham, Switzerland: Springer, 103–11. 8–9 March 2019.
  • Prathibha, G., and B. C. Mohan. 2018. Mammograms Classification Using Multiresolution Transforms and Convolution Neural Networks. In 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 1–7.
  • Preet, S. B. 2016. Classification of mammogram images by using CNN classifier. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 2743–49.
  • Rabidas, R., and W. Arif. 2020. Characterization of mammographic masses based on local photometric attributes. Multimedia Tools and Applications 79 (29–30):21967–85. doi:https://doi.org/10.1007/s11042-020-08959-7.
  • Rahimeto, S., T. G. Debelee, D. Yohannes, and F. Schwenker, et al. 2019. Automatic pectoral muscle removal in mammograms. Evolving Systems 12, 519–526.
  • Rahmatika, A., A. Handayani, and A. W. Setiawan. 2019. Automated Segmentation of Breast Tissue and Pectoral Muscle in Digital Mammography. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, 397–401.
  • Rajinikanth, V., S. Kadry, D. Taniar, R. Damasevicius, and H. T. Rauf, et al. 2021. Breast-cancer detection using thermal images with marine-predators-algorithm selected features. 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021, Chennai, India. https://doi.org/10.1109/ICBSII51839.2021.9445166.
  • Rampun, A. 2019. Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network. Medical image analysis 57:1–17. doi:https://doi.org/10.1016/j.media.2019.06.007.
  • Rampun, A., P. J. Morrow, B. W. Scotney, and H. Wang, et al. 2020. Breast density classification in mammograms: An investigation of encoding techniques in binary-based local patterns. Computers in Biology and Medicine 122:103842. doi:https://doi.org/10.1016/j.compbiomed.2020.103842.
  • Rastgarpour, P. M., A. Sharifi, and S. Yazdani. 2019. Extraction of spiculated parts of mammogram tumors to improve accuracy of classification. Multimedia Tools and Applications 78 (14):19979–20003. doi:https://doi.org/10.1007/s11042-019-7185-4.
  • Routray, N. P. R. 2018. Textural feature based classification of mammogram images using ANN. In 2018 9th International Conference on Computing, Communication and Networking Technologies, Bengaluru, India, 1–6.
  • Rup, M. S., B. Dash, B. Majhi, and M. Swamy. 2020. An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine. Applied Soft Computing 91:106266. doi:https://doi.org/10.1016/j.asoc.2020.106266.
  • Sadad, T., A. Munir, T. Saba, and A. Hussain, et al. 2018. Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature. Journal of computational science 29:34–45. doi:https://doi.org/10.1016/j.jocs.2018.09.015.
  • Sadoughi, F., Z. Kazemy, F. Hamedan, L. Owji, M. Rahmanikatigari, and T. T. Azadboni, et al. 2018. Artificial intelligence methods for the diagnosis of breast cancer by image processing: A review. Breast Cancer Targets Ther 10:219. doi:https://doi.org/10.2147/BCTT.S175311.
  • Saffari, N., H. A. Rashwan, M. Abdel-Nasser, V. Kumar Singh, M. Arenas, E. Mangina, and D. Puig, et al. 2020. Fully Automated Breast Density Segmentation and Classification Using Deep Learning. Diagnostics 10 (11):988. doi:https://doi.org/10.3390/diagnostics10110988.
  • Sajeev, S., M. Bajger, and G. Lee. 2018. Superpixel texture analysis for classification of breast masses in dense background. IET Computer Vision 12 (6):779–86. doi:https://doi.org/10.1049/iet-cvi.2017.0586.
  • Salama, M. S., A. S. Eltrass, and H. M. Elkamchouchi. 2018. An improved approach for computer-aided diagnosis of breast cancer in digital mammography. In 2018 IEEE international symposium on medical measurements and applications (MeMeA), Rome, Italy, 1–5.
  • Saleck, M., A. ElMoutaouakkil, and M. Mouçouf. 2017. Tumor detection in mammography images using fuzzy C-means and GLCM texture features. In 2017 14th International Conference on Computer Graphics, Imaging and Visualization, Marrakesh, Morocco, 122–25.
  • Samant, N., and P. Sonar. 2018. Mammogram classification in transform domain. In 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 56–62.
  • Sapate, S. G., A. Mahajan, S. N. Talbar, N. Sable, S. Desai, and M. Thakur, et al. 2018. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Computer methods and programs in biomedicine 163:1–20. doi:https://doi.org/10.1016/j.cmpb.2018.05.017.
  • Saxena, S., and M. Gyanchandani. 2020. Machine learning methods for computer-aided breast cancer diagnosis using histopathology: a narrative review. Journal of medical imaging and radiation sciences 51 (1):182–93. doi:https://doi.org/10.1016/j.jmir.2019.11.001.
  • Sechopoulos, I., J. Teuwen, and R. Mann. 2020. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol 72:214-225. doi: https://doi.org/10.1016/j.semcancer.2020.06.002.
  • Sharma, S., and R. Mehra. 2020. Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight. Journal of digital imaging 33 (3):632–54. doi:https://doi.org/10.1007/s10278-019-00307-y.
  • Shastri, A. A., D. Tamrakar, and K. Ahuja. 2018. Density-wise two stage mammogram classification using texture exploiting descriptors. Expert Systems with Applications 99:71–82. doi:https://doi.org/10.1016/j.eswa.2018.01.024.
  • Shayma’a, A. H., M. S. Sayed, M. I. Abdalla, and M. A. Rashwan, et al. 2019. Detection of breast cancer mass using MSER detector and features matching. Multimedia Tools and Applications 78 (14):20239–62. doi:https://doi.org/10.1007/s11042-019-7358-1.
  • Shen, L., M. He, N. Shen, N. Yousefi, C. Wang, and G. Liu, et al. 2020. Optimal breast tumor diagnosis using discrete wavelet transform and deep belief network based on improved sunflower optimization method. Biomedical Signal Processing and Control 60:101953. doi:https://doi.org/10.1016/j.bspc.2020.101953.
  • Shen, R., K. Yan, F. Xiao, J. Chang, C. Jiang, and K. Zhou, et al. 2018. Automatic pectoral muscle region segmentation in mammograms using genetic algorithm and morphological selection. Journal of digital imaging 31 (5):680–91. doi:https://doi.org/10.1007/s10278-018-0068-9.
  • Shinde, V., and B. T. Rao. 2019. Novel approach to segment the pectoral muscle in the mammograms. In Cognitive Informatics and Soft Computing, 227–37. Springer.
  • Shoaib, N. M., and S. Gattoufi. 2018. Detection and classification of the breast abnormalities in Digital Mammograms via Linear Support Vector Machine. In 4th Middle East Conference on Biomedical Engineering (MECBME), Tunis, Tunisia, 141–46.
  • Shu, X., L. Zhang, Z. Wang, Q. Lv, and Z. Yi, et al. 2020. Deep neural networks with region-based pooling structures for mammographic image classification. IEEE transactions on medical imaging, 39, 2246–55. 6.
  • Simon, C. P. 2020. A Novel Approach for Mammogram Enhancement using Nonlinear Unsharp Masking and L0 Gradient Minimization. Procedia Computer Science 171:1848–57. doi:https://doi.org/10.1016/j.procs.2020.04.198.
  • Singh, R., R. Singh, and A. Bhatia. 2018. Sentiment analysis using Machine Learning technique to predict outbreaks and epidemics. Int J Adv Sci Res 3 (2):19–24.
  • Singh, V. K. 2018. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer,Granada, Spain, 833–40.
  • Singh, V. P., and R. Srivastava. 2018. Automated and effective content-based mammogram retrieval using wavelet based CS-LBP feature and self-organizing map. Biocybernetics and Biomedical Engineering 38 (1):90–105. doi:https://doi.org/10.1016/j.bbe.2017.09.003.
  • Soleimani, O. V. 2020. Michailovich, On Segmentation of Pectoral Muscle in Digital Mammograms by Means of Deep Learning. IEEE Access, 8, 204173–82.
  • Song, R., T. Li, and Y. Wang. 2020. Mammographic Classification Based on XGBoost and DCNN With Multi Features. IEEE Access, 8, 75011–21.
  • Soulami, K. B., M. N. Saidi, B. Honnit, C. Anibou, and A. Tamtaoui, et al. 2019. Detection of breast abnormalities in digital mammograms using the electromagnetism-like algorithm. Multimedia Tools and Applications 78 (10):12835–63. doi:https://doi.org/10.1007/s11042-018-5934-4.
  • Suganthi, S. J., V. G., M. Parvathy, and C. D. Devi, et al. 2020. Pectoral Muscle Segmentation in Mammograms. Biomed Pharmacol 13 (3):1357–65. doi:https://doi.org/10.13005/bpj/2005.
  • Sun, L., J. Wang, Z. Hu, Y. Xu, and Z. Cui, et al. 2019. Multi-view convolutional neural networks for mammographic image classification. IEEE Access, 7, 126273–82.
  • Suresh, R., A. N. Rao, and B. E. Reddy. 2018. Improving the mammogram images by intelligibility mammogram enhancement method. In 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 1011–15.
  • Tariq, N., B. Abid, K. A. Qadeer, I. Hashim, Z. Ali, and I. Khosa, et al. 2019. Breast cancer classification using global discriminate features in mammographic images. Breast Cancer 10:2.
  • Tatikonda, K. C., C. M. Bhuma, and S. K. Samayamantula. 2018. The analysis of digital mammograms using HOG and GLCM features. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 1–7.
  • Tavakoli, N., M. Karimi, A. Norouzi, N. Karimi, S. Samavi, and S. R. Soroushmehr, et al. 2019. Detection of abnormalities in mammograms using deep features. Journal of Ambient Intelligence and Humanized Computing 1–13. https://doi.org/https://doi.org/10.1007/s12652-019-01639-x
  • Teuwen, J., S. van de Leemput, A. Gubern-Mérida, A. Rodriguez-Ruiz, R. Mann, and B. E. Bejnordi, et al. 2018. Soft tissue lesion detection in mammography using deep neural networks for object detection. Proceedings of the 1st Conference on Medical Imaging with Deep Learning; MIDL'18; July 4-6, 2018; Amsterdam, The Netherlands. 2018. pp. 1–9.
  • Thanh, D. N., N. N. Hien, V. S. Prasath, and N. H. Hai, et al. 2020. Automatic initial boundary generation methods based on edge detectors for the level set function of the Chan-Vese segmentation model and applications in biomedical image processing. In Satapathy S., Bhateja V., Nguyen B., Nguyen N., Le DN. (eds) Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing, vol 1014. Springer, Singapore. https://doi.org/https://doi.org/10.1007/978-981-13-9920-6_18,
  • Ting, F. F., Y. J. Tan, and K. S. Sim. 2019. Convolutional neural network improvement for breast cancer classification. Expert Systems with Applications 120:103–15. doi:https://doi.org/10.1016/j.eswa.2018.11.008.
  • Toz, P. E. 2018. A single sided edge marking method for detecting pectoral muscle in digital mammograms, Engineering. Technology and Applied Science Research 8 (1):2367–73. doi:https://doi.org/10.48084/etasr.1719.
  • Triyani, Y., H. A. Nugroho, M. Rahmawaty, I. Ardiyanto, and L. Choridah, et al. 2016. Performance analysis of image segmentation for breast ultrasound images. In 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 1–6.
  • Uthoff, J. C. S. 2018. Information theory optimization based feature selection in breast mammography lesion classification. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 817–21.
  • Vikhe, P., and V. Thool. 2018. Morphological operation and scaled réyni entropy based approach for masses detection in mammograms. Multimedia Tools and Applications 77 (18):23777–802. doi:https://doi.org/10.1007/s11042-018-5681-6.
  • Wang, H. et al.,. 2018. Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recognition 80: 42–52. doi:https://doi.org/10.1016/j.patcog.2018.02.026.
  • Wang, R. et al.,. 2019a. Multi-level nested pyramid network for mass segmentation in mammograms. Neurocomputing 363: 313–20. doi:https://doi.org/10.1016/j.neucom.2019.06.045.
  • Wang, Z. 2019b. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access, 7, 105146–58.
  • Xi, P., C. Shu, and R. Goubran. 2018. Abnormality detection in mammography using deep convolutional neural networks. In 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 1–6.
  • Xu, J., C. Li, Y. Zhou, L. Mou, H. Zheng, and S. Wang, et al. 2018. Classifying mammographic breast density by residual learning. arXiv preprint arXiv:1809.10241.
  • Yadav, S. S., and S. M. Jadhav. 2020. Thermal infrared imaging based breast cancer diagnosis using machine learning techniques. Multimedia Tools and Applications 1–19. https://doi.org/https://doi.org/10.1007/s11042-020-09600-3
  • Yan, Y. S., C. Song, and B. Zheng. 2019. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. International journal of computer assisted radiology and surgery 14 (2):237–48. doi:https://doi.org/10.1007/s11548-018-1867-7.
  • Yaşar, H., U. Kutbay, and F. Hardalaç. 2018. A new combined system using ANN and complex wavelet transform for tissue density classification in mammography images. In 2018 4th International Conference on Computer and Technology Applications (ICCTA), Istanbul, Turkey,179–83.
  • Yousefi M., Krzyżak A., and Suen C. Y. 2018. Mass detection in digital breast tomosynthesis data using convolutional neu-ral networks and multiple instance learning. Computers in biology and medicine, 96, 283–293.
  • Yu, S., L. Liu, Z. Wang, G. Dai, and Y. Xie. 2019. Transferring deep neural networks for the differentiation of mammographic breast lesions, Science China. Technological Sciences 62 (3):441–47. doi:https://doi.org/10.1007/s11431-017-9317-3.
  • Yu, X., N. Zeng, S. Liu, and Y.-D. Zhang. 2019. Utilization of DenseNet201 for diagnosis of breast abnormality. Machine Vision and Applications 30 (7–8):1135–44. doi:https://doi.org/10.1007/s00138-019-01042-8.
  • Zebari, A., H. Haron, S. R. Zeebaree, and D. Q. Zeebaree, et al. 2019. Enhance the Mammogram Images for Both Segmentation and Feature Extraction Using Wavelet Transform. In 2019 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 100–05.
  • Zebari, D. A., D. Q. Zeebaree, A. M. Abdulazeez, H. Haron, and H. N. A. Hamed, et al. 2020. Improved Threshold Based and Trainable Fully Automated Segmentation for Breast Cancer Boundary and Pectoral Muscle in Mammogram Images. IEEE Access, 8, 203097–116.
  • Zeebaree, D. Q., H. Haron, A. M. Abdulazeez, and D. A. Zebari, et al. 2019a. Machine learning and region growing for breast cancer segmentation. In 2019 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 88–93.
  • Zeebaree, D. Q., H. Haron, A. M. Abdulazeez, and D. A. Zebari, et al. 2019b. Trainable model based on new uniform LBP feature to identify the risk of the breast cancer. In 2019 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Kurdistan region, Iraq, 106–11.
  • Zeiser, F. A. 2020. Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning. Journal of digital imaging 33(4): 858–868.
  • Zhang, X., and Z. Wang. 2019. A microcalcification cluster detection method based on deep learning and multi-scale feature fusion. The Journal of Supercomputing 75 (9):5808–30. doi:https://doi.org/10.1007/s11227-019-02867-w.
  • Zhang, Y.-D., S. C. Satapathy, D. S. Guttery, J. M. Górriz, and S.-H. Wang, et al. 2021. Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network. Information Processing & Management 58 (2):102439. doi:https://doi.org/10.1016/j.ipm.2020.102439.
  • Zhang. 2020. DE-Ada*: A novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions. Information Sciences 539: 461–86. doi:https://doi.org/10.1016/j.ins.2020.05.080.
  • Zheng, X. 2020. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nature communications 11 (1):1–9. doi:https://doi.org/10.1038/s41467-019-13993-7.
  • Zhong, S. J., A. Rampun, and H. Wang. 2018. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms. Computers in biology and medicine 96:178–88. doi:https://doi.org/10.1016/j.compbiomed.2018.03.011.
  • Zhu, W., X. Xiang, T. D. Tran, G. D. Hager, and X. Xie, et al. 2018. Adversarial deep structured nets for mass segmentation from mammograms. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), Washington, DC, USA, 847–50.