1,762
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of Local Scour around Bridge Piers Using Hierarchical Clustering and Adaptive Genetic Programming

ORCID Icon & ORCID Icon
Article: 2001734 | Received 05 Apr 2021, Accepted 28 Oct 2021, Published online: 21 Dec 2021

References

  • Aksoy, A. Ö., G. Bombar, T. Arkı¸s, and M. S. ¸. Guney. 2017. Study of the time-dependent clear water scour around circular bridge piers. Journal of Hydrology and Hydromechanics (Berlin) 65 (1):1–26. doi:10.1515/johh-2016-0048.
  • Alpaydın, E. 2020. Introduction to Machine Learning. 4th ed. Cambridge, Massachusetts: The MIT Press.
  • Azamathulla, H. M., A. Ab Ghani, N. A. Zakaria, and A. Guven. 2010. Genetic programming to predict bridge pier scour. Journal of Hydraulic Engineering 136 (3):165–69. doi:10.1061/(ASCE)HY.1943-7900.0000133.
  • Azmathullah, H. M., M. C. Deo, and P. B. Deolalikar. 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. Journal of Hydraulic Engineering 131 (10):898–908. doi:10.1061/(ASCE)0733-9429(2005)131:10(898).
  • Bata, G., and V. Todorovic. 1960. Erozija iko novosadskog mostovskog stuba (Scour around bridge piers - Novi Sad):Institut za vodoprivredu. Jaroslav Cerni, Beograd, Yugoslavia 59–66.
  • Bateni, S. M., S. M. Borghei, and D.-S. Jeng. 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence 20 (3):401–14. doi:10.1016/j.engappai.2006.06.012.
  • Benedict, S. T., and A. W. Caldwell. 2006. Development and evaluation of clear-water pier and contraction scour envelope curves in the Coastal Plain and Piedmont Provinces of South Carolina. Report 2005–5289, U.S. Geological Survey Scientific Investigations. p.98. http://pubs.usgs.gov/sir/2005/5289.
  • Benedict, S., and W. Caldwell. 2009. Development and evaluation of live-bed pier and contraction scour envelope curves in the Coastal Plain and Piedmont Provinces of South Carolina. Report 2009–5099, U.S. Geological Survey Scientific Investigations. p.108. http://pubs.usgs.gov/sir/2009/5099/
  • Boehmler, E. M., and J. R. Olimpio. 2000. Evaluation of pier scour measurement methods and pier- scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995–98: Report 00–4186, p. 58, p.108. U.S. Geological Survey Scientific Investigations.
  • Bor, A. 2015. Experimental and numerical study of local scour around bridge piers with different cross sections caused by flood hydrograph succeeding steady flow.” PhD diss., Phd Thesis, Dokuz Eylül University, Ankara.
  • Breusers, H. N. C., G. Nicollet, and H. W. Shen. 1977. Local scour around cylindrical piers. Journal of Hydraulic Research 15 (3):211–52. doi:10.1080/00221687709499645.
  • Butch, G. K. 1991. Measurement of bridge scour at selected sites in New York, excluding Long Island. Report 91–4083 21. U.S. Geological Survey Water-Resources Investigations.
  • Chabert, J., and P. Engeldinger. 1956. Etude des affouillements autour des piles de ponts (Study of scouring around bridge piers). France: Chatou, France: Laboratoire National d’Hydraulique.
  • Chang, F. M. 1980. Scour at bridge piers; field data from Louisiana files: Report FHWA-RD-79-105. As cited in Froehlich (1988), Federal Highway Administration.
  • Chee, R. K. W. 1982. Live-bed scour at bridge piers. Report No. 290. As cited in Sheppard and others (2011). Auckland, New Zealand: The University of Auckland, School of Engineering.
  • Cheong, S.-U. C. S. 2006. Prediction of local scour around bridge piers using artificial neural networks1. JAWRA Journal of the American Water Resources Association 42 (2):487–94. doi:10.1111/j.1752-1688.2006.tb03852.x.
  • Chicco, D., M. J. Warrens, and G. Jurman. 2021. The coefficient of determina- tion R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regres- sion analysis evaluation”[in en]. PeerJ Computer Science 7 (July): e623. Accessed August 22, 2021. doi: 10.7717/peerj-cs.623.
  • Chiew, Y.-M. 1984. Local scour at bridge piers. Report No. 355. As cited in Sheppard and others (2011), Auckland, New Zealand: The University of Auckland, School of Engineering.
  • Choi, S.-U., B. Choi, and S. Lee. 2017. Prediction of local scour around bridge piers using the ANFIS method. Neural Computing and Applications 28(2): 335–44. (February). Accessed March 29, 2020. doi:10.1007/s00521-015-2062–1.
  • Coleman, S. E., C. S. Lauchlan, and B. W. Melville. 2003. Clear-water scour development at bridge abutments. Journal of Hydraulic Research 41 (5):521–31. doi:10.1080/00221680309499997.
  • Dabhi, V. K., and C. Sanjay. 2015a. Empirical modeling using genetic programming: A survey of issues and approaches. Natural Computing 14(2): 303–30. June. 1572–9796. doi:10.1007/s11047-014-9416-y.
  • Dabhi, V. K., and C. Sanjay. 2015b. Empirical modeling using genetic programming: A survey of issues and approaches. Natural Computing 14(2): 303–30. (June). Accessed August 22, 2021. doi:10.1007/s11047-014-9416-y.
  • Dang, N. M., D. T. Anh, and T. D. Dang. 2019. ANN optimized by PSO and Firefly algorithms for predicting scour depths around bridge piers. Engineering with Computers (July). Accessed November 29, 2020. doi:10.1007/s00366-019-00824–y.
  • Davoren, A. 1985. Local scour around a cylindrical bridge pier:Publication no. 3. Technical report. As cited in Froehlich (1988), Christchurch, New Zealand: Hydrology Center.
  • Dey, S., and R. V. Raikar. 2005. Scour in long contractions. Journal of Hydraulic Engineering 131 (12):1036–49. doi:10.1061/(ASCE)0733-9429(2005)131:12(1036).
  • Dey, S., S. K. Bose, and G. L. N. Sastry. 1995. Clear water scour at circular piers-A model. Journal of Hydraulic Engineering, American Society of Civil Engineering 121 (12):869–76. doi:10.1061/(ASCE)0733-9429(1995)121:12(869).
  • Ettema, R. 1976. Influence of bed material gradation on local scour. Report No. 124. As cited in Sheppard and others (2011), Auckland, New Zealand: The University of Auckland, School of Engineering.
  • Ettema, R. 1980. “Scour at bridge piers.” PhD diss., Phd Thesis, University of Auckland, Auckland.
  • Ettema, R., G. Kirkil, and M. Muste. 2006, January 1. Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering 132 (1):33–40. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33)
  • Firat, M., and M. Gungor. 2009. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Advances in Engineering Software 40 (8):731–37. doi:10.1016/j.advengsoft.2008.12.001.
  • Fortin, F.-A., F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné. 2012. DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research 13 (July):2171–75.
  • Gao, D., L. Posada, and C. F. Nordin. 1993. Pier scour equations used in the People’s Republic of China. Report FHWA-SA-93-076. As cited in Sheppard and others (2011). Wash- ington, DC, Federal Highway Administration.
  • Graf, W. H. 1995. Load scour around piers. Annual Report p. B.33.1-B.33.8. As cited in Sheppard and others (2011), Lausanne, Switzerland, Laboratoire de Recherches Hydrauliques: Ecole Polytechnique Federale de Lausanne.
  • Guven, A., H. M. Azamathulla, and N. A. Zakaria. 2009. Linear genetic programming for prediction of circular pile scour. Ocean Engineering 36 (12):985–91. doi:10.1016/j.oceaneng.2009.05.010.
  • Hager, W. H., and J. Unger. 2010. Bridge Pier Scour under flood waves. Journal of Hydraulic Engineering 136 (10):842–47. doi:10.1061/(ASCE)HY.1943-7900.0000281.
  • Hayes, D. C. 1996. Scour at bridge sites in Delaware, Maryland, and Virginia. Report 96–4089, U.S. Geological Survey Water-Resources Investigations. 39.
  • Hodgkins, G., and P. Lombard. 2002. Observed and prediction pier scour in Maine. Report 02–4229, U.S. Geological Survey Water-Resources Investigations. 30p.
  • Hoffmans, G. J. C. M., and H. J. Verheij. 1997. Scour Manual. Rotterdam: A.A. Balkema: A.A. Balkema Publishers.
  • Holnbeck, S. R. 2011. Investigation pier scour in coarse-bed streams in Montana, 2001 through 2007. Report 2011–5107, U.S. Geological Survey Scientific Investigations. 68.
  • Hopkins, G. R., R. W. Vance, and B. Kasraie. 1980. Scour around bridge piers. Report FHWA- RD-79-103, 131. Federal Highway Administration.
  • Jain, S. C., and E. E. Fischer. 1979. Scour around bridge piers at high Froude numbers. FHWA- RD-79-104. As cited in Sheppard and others (2011). available from NTIS, 5285 Port Royal Road, Springfield, Virginia 22161, Federal Highway Administration Report.
  • Jain, S. K. 2001. Development of integrated sediment rating curves using ANNs. Journal of Hydraulic Engineering 127 (1):30–37. doi:10.1061/(ASCE)0733-9429(2001)127:1(30).
  • Jolliffe, I. 2005. Principal component analysis. In Encyclopedia of statistics in behavioral science, 1-6, New York: American Cancer Society. isbn: 9780470013199. doi:10.1002/0470013192.bsa501.
  • Kaya, A. 2010. Artificial neural network study of observed pattern of scour depth around bridge piers. Computers and Geotechnics 37 (3):413–18. doi:10.1016/j.compgeo.2009.10.003.
  • Lan¸ca, R. M., C. S. Fael, R. J. Maia, J. P. Pêgo, and A. H. Cardoso. 2013. Clear-water scour at comparatively large cylindrical piers. Journal of Hydraulic Engineering 139 (11):1117–25. doi:10.1061/(ASCE)HY.1943-7900.0000788.
  • Lee, T. L., D. S. Jeng, G. H. Zhang, and J. H. Hong. 2007. Neural network modeling for estimation of scour depth around bridge piers. Journal of Hydrodynamics, Ser. B 19 (3):378–86. doi:10.1016/S1001-6058(07)60073-0.
  • Liriano, S., and R. Day. 2001. Prediction of scour depth at culvert outlets using neural networks. Journal of Hydroinformatics 3 (4):231–38. doi:10.2166/hydro.2001.0021.
  • Max, S. D., M. Odeh, and T. Glasser. 2004. Large scale clear-water local pier scour experiments. Journal of Hydraulic Engineering 130 (10):957–63. doi:10.1061/(ASCE)0733-9429(2004)130:10(957).
  • Max, S. D., and W. Miller Jr. 2006. Live-bed local pier scour experiments. Journal of Hydraulic Engineering 132 (7):635–42. doi:10.1061/(ASCE)0733-9429(2006)132:7(635).
  • Melville, B. W. 1975. Local scour at bridge sites PhD diss., Auckland: University of Auckland, School of Engineering.
  • Melville, B. W., and Y.-M. Chiew. 1999. Time scale for local scour at bridge piers. Journal of Hydraulic Engineering 125 (1):59–65. doi:10.1061/(ASCE)0733-9429(1999)125:1(59).
  • Melville, B. W. 1997. Pier and Abutment Scour: Integrated Approach. Journal of Hydraulic Engineering 123 (2):125–36. doi:10.1061/(ASCE)0733-9429(1997)123:2(125).
  • Mignosa, P. 1980. Fenomeni di Erosione Locale alla Base delle Pile del Ponti PhD diss., Tesi di LAura, Department of Hydraulics Structure, Politecnico di Mlano, Milan, Italy.
  • Mohammadpour, R., A. A. B. Ghani, and H. M. Azamathulla. 2013. Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management 11 (1):121–35. doi:10.1080/15715124.2013.772522.
  • Muller, D. S., and C. R. Wagner. 2005. Field observations and evaluations of streambed scour at bridges. Technical report, McLean, Virginia: Office of Engineering Research and Development, Federal Highway Administration.
  • Muller, D. S., R. L. Miller, and J. T. Wilson. 1994. Historical and potential scour around bridge piers and abutments of selected stream crossing in Indiana. Report 93–4066, p.123. U.S. Geological Survey Water-Resources Investigations.
  • Najafzadeh, M., and G.-A. Barani. 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica 18 (6):1207–13. doi:10.1016/j.scient.2011.11.017.
  • Neil, C. R. 1965. Measurements of bridge scour and bed changes in a flooding sand-bed river. Proceedings of the Institution of Civil Engineers, 30(2), 415–435. London, England: The Institution of Civil Engineers.
  • Oliveto, G., and W. H. Hager. 2002. Temporal evolution of clear-water pier and abutment scour. Journal of Hydraulic Engineering 128 (9):811–20. doi:10.1061/(ASCE)0733-9429(2002)128:9(811).
  • Pal, M., N. K. Singh, and N. K. Tiwari. 2011. Support vector regression based modeling of pier scour using field data. Engineering Applications of Artificial Intelligence 24 (5):911–16. doi:10.1016/j.engappai.2010.11.002.
  • Pal, M. 2019. Deep neural network based pier scour modeling. ISH Journal of Hydraulic Engineering:1–6. doi:10.1080/09715010.2019.1679673.
  • Pandey, M. P., K. Sharma, Z. Ahmad, U. K. Singh, and N. Karna. 2018. Three- dimensional velocity measurements around bridge piers in gravel bed. Marine Georesources & Geotechnology 36 (6):663–76. doi:10.1080/1064119X.2017.1362085.
  • Pandey, M., S.-C. Chen, P. K. Sharma, C. S. P. Ojha, and V. Kumar. 2019. Local scour of armor layer processes around the circular pier in non-uniform gravel bed. Water 11 (7):1421. 2073–4441. doi:10.3390/w11071421.
  • Pizarro, A., S. Manfreda, and E. Tubaldi. 2020. The science behind scour at bridge foundations: A review. Water 12 (2): 374. (February). Accessed March 29, 2020. doi:10.3390/w12020374.
  • Poli, R., W. B. Langdon, N. F. McPhee, and J. R. Koza. 2008. A field guide to genetic programming. United Kingdom: Lulu Enterprises, UK Ltd.
  • Richardson, E. V., and S. R. Davis. 2001. Evaluating scour at bridges. Report. Number FHWA NHI 01–001. Washington, D.C.: Federal Highway Administration.
  • Sharafati, A., M. Haghbin, D. Motta, and Z. M. Yaseen. 2019. The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Archives of Computational Methods in Engineering November. 1886–1784. Accessed March 29, 2020. doi:10.1007/s11831-019-09382-4.
  • Shen, H. W. 1975. Compilation of scour data based on California bridge failures. Publication FHWA-RD-76-142, 28. Department of Transportation Federal Highway Administration.
  • Shen, H. W., V. R. Schneider, and S. Karaki. 1969. Local scour around bridge piers. Journal of the Hydraulics Division 96:HY6.
  • Sheppard, D. M., B. W. Melville, and H. Demir. 2014. Evaluation of existing equations for local scour at bridge piers. Journal of Hydraulic Engineering 140 (1):14–23. doi:10.1061/(ASCE)HY.1943-7900.0000800.
  • Southard, S. E. 1992. Scour around bridge piers on stream bank in Arkansas. Report 92–4126, 29. U.S. Geological Survey Water-Resources Investigations.
  • Trent, R., N. Gagarin, and J. Rhodes. 1993. Estimating pier scour with artificial neural networks. In Hydraulic engineering, 1043–48. USA: ASCE.
  • USGeologicalSurvey. 2001. National bridge scour database. USGS. Accessed April 15, 2014. http://water.usgs.gov/osw/techniques/bs/BSDMS/index.htm
  • Vanneschi, L., M. Castelli, and S. Silva. 2010. Measuring bloat, overfitting and functional complexity in genetic programming In Proceedings of the 12th Annual Con- ference on Genetic and Evolutionary Computation, 877–84. GECCO ‘10. Portland, Oregon, USA: Association for Computing Machinery. doi:10.1145/1830483.1830643.
  • Vijayasree, B. A., T. I. Eldho, B. S. Mazumder, and N. Ahmad. 2019. Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management 17 (1):109–29. doi:10.1080/15715124.2017.1394315.
  • Wang, C., H.-P. Shih, J.-H. Hong, and R. V. Raikar. 2013. Prediction of bridge pier scour using genetic programming. Journal of Marine Science and Technology 21:483–92.
  • Williamson, D. 1993. Local scour measurements at bridge piers in Alberta In Proceedings of the 1993 National Conference on Hydraulic Engineering, p. 534–39. New York: American Society of Civil Engineering.
  • Wilson, K. V. 1995. Scour at selected bridge sites in Mississippi: Report 94–4241, p. 48. U.S. Geological Survey Water-Resources Investigations.
  • Xu, D., and Y. Tian. 2015. A comprehensive survey of clustering algorithms. Annals of Data Science 2(2): 165–93. June. Accessed August 22, 2021. doi:10.1007/s40745-015-0040-1.
  • Yanmaz, A. M., and H. D. Altinbilek. 1991. Study of time dependent local scour around bridge piers. Journal of Hydraulic Engineering 117 (10):1247–68. doi:10.1061/(ASCE)0733-9429(1991)117:10(1247).
  • Yanmaz, A. M. 2002. Köprü Hidroliği. Ankara: METU Press.
  • Yanmaz, A. M. 2006. Temporal variation of clear water scour at cylindrical bridge piers. Canadian Journal of Civil Engineering 33 (8):1098–102. doi:10.1139/l06-054.
  • Zhuravlyov, M. M. 1978. New method for estimation of local scour due to bridge piers and its substantiation. Technical report. As cited in Sheppard and others (2011), Moscow, Russia: Transactions, Ministry of Transport Construction, State All Union Scientific Research Institute on Roads.
  • Zohuri, B. 2016. Dimensional analysis beyond the Pi theorem. First ed. Switzerland: Springer Publishing Company.