11,040
Views
6
CrossRef citations to date
0
Altmetric
Review

A Systematic Overview of Android Malware Detection

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & show all
Article: 2007327 | Received 05 Aug 2021, Accepted 08 Nov 2021, Published online: 14 Dec 2021

References

  • Afonso, V. M., M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. de Geus. 2015. Identifying Android malware using dynamically obtained features. Journal of Computer Virology & Hacking Techniques 11 (1):9–524. 2015. doi:10.1007/s11416-014-0226-7.
  • Alam, S., and Alharbi S. A., Yildirim, S. 2020. Mining nested flow of dominant APIs for detecting android malware. Computer Networks 167:107026. doi:10.1016/j.comnet.2019.107026.
  • Alazab, M., Alazab, M., Shalaginov, A., Mesleh A., and Awajan A. 2020. Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems 107:509–21. doi:10.1016/j.future.2020.02.002.
  • Allix, K., T. Bissyandé, J. Klein, and Y. Traon. (2016). AndroZoo: Collecting millions of Android apps for the research community. In Proceedings of the 13th International Conference on Mining Software Repositories (MSR ‘16). Association for Computing Machinery, New York, NY, USA, 468–71. DOI:10.1145/2901739.2903508
  • Alqahtani, E. J., Zagrouba, R., and Almuhaideb A. (2019). A survey on android malware detection techniques using machine learning algorithms. In 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, 110–17. IEEE.
  • Amodei, D., and C. Olah, Steinhardt, J., Christiano, P., Schulman, J., Mané, D. 2016. Concrete Problems in AI Safety
  • Arp, D., Spreitzenbarth, Hübner, Gascon, and Rieck. 2014. Drebin: effective and explainable detection of android malware in your pocket Network and Distributed System Security Symposium February 23-26, 2014 San Diego, CA
  • Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, L. T. Yves, D. Octeau, and M. Patrick. (2014). FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, New York, NY, USA, 259–69. DOI:10.1145/2594291.2594299
  • Atzeni, A., Díaz, F., Marcelli, Sánchez, Squillero, and Tonda. 2018. Countering android malware: A scalable semi-supervised approach for family-signature generation. IEEE Access 6:59540–56. doi:10.1109/ACCESS.2018.2874502.
  • Babaagba, and Adesanya. 2019. A study on the effect of feature selection on malware analysis using machine learning. ACM International Conference Proceeding Series F148151:51–55.
  • Bai, H., Xie, N., X. Di, and Q. Ye. 2020. FAMD: A fast multifeature android malware detection framework, design, and implementation. IEEE Access 8:194729–40. doi:10.1109/ACCESS.2020.3033026.
  • Bakour, and Ünver. 2021. DeepVisDroid: Android malware detection by hybridizing image-based features with deep learning techniques. Neural Computing and Applications 33(18):11499–516. 2021. doi:10.1007/s00521-021-05816-y.
  • Bakour, Ünver, and Ghanem. 2019. The Android malware detection systems between hope and reality. SN Applied Sciences 1 (9):2019. doi:10.1007/s42452-019-1124-x.
  • Biggio, Nelson, and Laskov. 2013. Poisoning attacks against support vector machines. Computer Science 28:331–44. doi:10.1007/s00450-013-0251-7.
  • Birman, Hindi, Katz, and Shabtai. (2019). Transferable cost-aware security policy implementation for malware detection using deep reinforcement learning.
  • Boswell. (2002). Introduction to support vector machines.
  • Cai, H., N. Meng, B. Ryder, and D. Yao. 2018. Droidcat: effective android malware detection and categorization via app-level profiling. IEEE Transactions on Information Forensics & Security 14:1455- 70 .
  • Cai, H., N. Meng, and B. Ryder, Yao, D. 2016. DroidCat: unified dynamic detection of android malware https://vtechworks.lib.vt.edu/handle/10919/77523. .
  • Cai, H. 2020. A preliminary study on the sustainability of android malware detection. ACM Transactions on Software Engineering and Methodology, 1807.08221, 1–28. http://dx.doi.org/10.1145/3371924.
  • Cai, H. 2020a. Assessing and improving malware detection sustainability through app evolution studies. ACM Transactions on Software Engineering and Methodology. 29 (2): 28. April 2020. Article 8. doi: 10.1145/3371924.
  • Cai, H. (2020b). Embracing mobile app evolution via continuous ecosystem mining and characterization. MOBILESoft ‘20: IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems July 13-15, 2020. Seoul, ROK: ACM.
  • Cai, L., Li, Y., and Xiong Z. 2021. JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers and Security 100:102086. doi:10.1016/j.cose.2020.102086.
  • Cai, M., Jiang, Y., C. Gao, Li, H., and Yuan W. 2021. Learning features from enhanced function call graphs for Android malware detection. Neurocomputing 423:301–07. doi:10.1016/j.neucom.2020.10.054.
  • Carlini N., and Wagner D. 2017. Towards evaluating the robustness of neural networks 2017 IEEE Symposium on Security and Privacy (SP) San Jose, CA. 39–57 doi:10.1109/SP.2017.49.
  • Chen, Li, Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren. 2018. Android HIV: A study of repackaging malware for evading machine-learning detection. arXiv 15:987–1001.
  • Chen, S., M. Xue, Z. Tang, L. Xu, and H. Zhu. (2016). StormDroid: A streaminglized machine learning-based system for detecting android malware. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 377–388. Xi'an, CN: ACM.
  • Chen, Shi, Xie, Yang, Fang, and Wen. 2021. Suip: an android malware detection method based on data flow features. Journal of Physics: Conference Series 1812 (1):12010.
  • Chen, Zhang, Yang, and Sahita. (2017). Poster: semi-supervised classification for dynamic android malware detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2479–81.
  • Dash, S., G. Suarez-Tangil, S. Khan, K. Tam, and R. Holloway. 2016. DroidScribe: classifying android malware based on runtime behavior 2016 IEEE Security and Privacy Workshops (SPW) 22-26 May 2016 San Jose, CA. 252–61 doi:10.1109/SPW.2016.25.
  • Dash, and Liu. 2003. Consistency-based search in feature selection. Artificial Intelligence 151 (1–2):155–76. doi:10.1016/S0004-3702(03)00079-1.
  • Demontis, A., M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, and F. Roli. 2017. Yes, machine learning can be more secure! a case study on android malware detection. IEEE Transactions on Dependable & Secure Computing PP (99):1–1.
  • Du, X., Cai, Y., Wang S., and Zhang L. (2016). Overview of deep learning. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC),Wuhan, CN, 159– 64. IEEE.
  • Engelen, and Hoos. 2020. A survey on semi-supervised learning. Machine Learning 109:02.
  • Faiz, M. F. I., Hussain, M. A., and Marchang N. (2020). Android malware detection using multi-stage classification models. In Conference on Complex, Intelligent, and Software Intensive Systems Lodz, PL, 244–54. Springer.
  • Fan, M., Liu, J., X. Luo, Chen, K., Z. Tian, Zheng, Q., and T. Liu. 2018. Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Transactions on Information Forensics and Security 13 (8):1890–905. doi:10.1109/TIFS.2018.2806891.
  • Fan, M., Luo, X., J. Liu, M. Wang, Nong, C., Zheng Q., and T. Liu. (2019). Graph embedding based familial analysis of android malware using unsupervised learning. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE) Montreal, Quebec, 771–82. IEEE.
  • Fang, Wang, and Geng, Kan. 2019. Feature selection for malware detection based on reinforcement learning. IEEE Access 7:176177–87. doi:10.1109/ACCESS.2019.2957429.
  • Fatima, A., Maurya, R., M. S. Dutta, Burget, R., and Masek J. (2019). Android malware detection using genetic algorithm based optimized feature selection and machine learning. 2019 42nd International Conference on Telecommunications and Signal Processing, Budapest, Hungary, TSP 2019, 220–23.
  • Firdaus, Anuar, A., Karim N. B., and Razak. 2018. Discovering optimal features using static analysis and a genetic search based method for android malware detection. Frontiers of Information Technology & Electronic Engineering 19 (6):712–36. doi:10.1631/FITEE.1601491.
  • Firdausi, I., Lim, C., Erwin A., and Nugroho A. S. (2010). Analysis of machine learning techniques used in behavior-based malware detection. In Proceedings - 2010 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT 2010, Washington, DC, 201–03.
  • Fu, X., and H. Cai. (2019). On the deterioration of learning-based malware detectors for android. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)ACM, Montreal, Quebec, 2019.
  • Gao. (2019). Detecting android malicious applications based on string and function function call graph features. Master’s thesis, BJTU.
  • Gershenson. (2003).Artificial neural networks for beginners. arXiv preprint cs/0308031.
  • Grosse, K., N. Papernot, P. Manoharan, M. Backes, and P. Mcdaniel. 2017. Adversarial examples for malware detection ESORICS 2017: Computer Security – ESORICS Oslo, Norway (Springer International Publishing)62–79 .
  • Gruver, B. (2021). JesusFreke/smali: Smali/baksmali. https://github.com/JesusFreke/smali
  • Gu T., Dolan-Gavitt B., and Garg S. 2019. Badnets: Identifying vulnerabilities in the machine learning model supply chain. . https://arxiv.org/abs/1708.06733
  • Halder, Reox, S., A. Desnos, and A. Desnos. (2020). androguard/androguard: Reverse engineering, Malware and goodware analysis of Android applications … and more (ninja !). https://github.com/androguard/androguard
  • Ham H.-S., -H.-H. Kim, M.-S. Kim, M.-J. Choi, and . 2014. Linear svm-based android malware detection for reliable iot services. Journal of Applied Mathematics 2014:1–10. doi:10.1155/2014/594501.
  • Hasegawa, C. Iyatomi, H. (2018). One-dimensional convolutional neural networks for Android malware detection. In Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its Application Penang, Malaysia, CSPA 2018.
  • Huang, M. (2020). Yearly 5G smartphone production projected to exceed 200 million units thanks to smartphone brands’ proactive push in 2H20, Says TrendForce. https://www.trendforce.com/presscenter/news/20200722-10398.html
  • Huda, Abawajy, Alazab, Abdollalihian, and Islam, John. 2016. Hybrids of support vector machine wrapper and filter based framework for malware detection. Future Generation Computer Systems 55:376–90. doi:10.1016/j.future.2014.06.001.
  • Ilham, S., Abderrahim, G., and Abdelhakim B. A. (2018). Clustering android applications using k-means algorithm using permissions. In The Proceedings of the Third International Conference on Smart City Applications Tétouan, Morocco, 678–90. Springer.
  • Internet Security Center. (2020). Android malware special report. https://cert.360.cn/report/detail?id=0d66c8ba239680d6674f2dba9f2be5f7
  • Jordaney, R., Sharad, K., S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro. (2017). Transcend: Detecting concept drift in malware classification models. In Proceedings of the 26th USENIX Conference on Security Symposium (SEC’17). USENIX Association, USA, 625–42.
  • Kantchelian, A., Afroz, S., L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt, A. D. Joseph, and J. D. Tygar. (2013). Approaches to adversarial drift. In roceedings of the 2013 ACM workshop on Artificial intelligence and security (AISec ‘13). Association for Computing Machinery, New York, NY, USA, 99–110. DOI:10.1145/2517312.2517320
  • Kanungo, Mount, Netanyahu, Piatko, Silverman, and A. Y. Wu. 2002. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (7):881–92. doi:10.1109/TPAMI.2002.1017616.
  • Khowaja, S., and P. Khuwaja. 2021. Q-learning and lstm based deep active learning strategy for malware defense in industrial iot applications. Multimedia Tools and Applications 1–27. doi:10.1007/s11042-020-10371-0.
  • Kim, T., Kang, B., M. Rho, Sezer, S., and E. G. Im. 2018. A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security PP:1–1, 08.
  • Kumar, R., X. Zhang, Wang W., R. U. Khan, J. Kumar, and A. Sharif. 2019. A multimodal malware detection technique for android iot devices using various features. IEEE Access 7:64411–30. doi:10.1109/ACCESS.2019.2916886.
  • Kurakin, A., Goodfellow, I., and Bengio S. (2019). Adversarial examples in the physical world. . https://arxiv.org/abs/1607.02533v4
  • Lashkari, A. H., Kadir, Taheri, and Ghorbani. (2018). Toward developing a systematic approach to generate benchmark android malware datasets and classification. In 2018 International Carnahan Conference on Security Technology (ICCST) Montreal, QC, 1–7. IEEE.
  • Lashkari, Kadir, Gonzalez, Mbah, and Ghorbani. (2017). Towards a network-based framework for android malware detection and characterization. In 2017 15th Annual conference on privacy, security and trust (PST) Calgary, AB, 233–23309. IEEE.
  • LeCun, Y., Bengio, Y., and Hinton G. 2015. Deep learning. nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Leung. 2007. Naive Bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering (2007:123–56.
  • Li, J., Wang, Z., T. Wang, J. Tang, Yang, Y., and Zhou Y. 2018. An android malware detection system based on feature fusion. Chinese Journal of Electronics 27 (6):1206–13. doi:10.1049/cje.2018.09.008.
  • Li, L., T.F. Bissyandé, Papadakis, M., S. Rasthofer, A. Bartel, D. Octeau, J. Klein, and L. Traon. 2017. Static analysis of android apps: A systematic literature review. Information and Software Technology 88(2017):67–95. 0950-5849. doi:10.1016/j.infsof.2017.04.001.
  • Li, W., X. Fu, and H. Cai. (2021). AndroCT: ten years of app call traces in android. 570–74. 10.1109/MSR52588.2021.00076.
  • Li, Y., Jang, J., Hu, X., Ou, X. (2017). Android malware clustering through malicious payload mining. International symposium on research in attacks, intrusions, and defenses Atlanta, GA. Springer, Cham, 2017. 192–214.
  • Li, Zhang, Che, Guo, and Cai. 2021. A survey on feature extraction methods of heuristic malware detection. Journal of Physics: Conference Series 1757 (1):012071.
  • Liu Y., S. Ma, Y. AaFer, W. C. Lee, and X. Zhang. 2018. Trojaning attack on neural networks Network and Distributed System Security Symposium San Diego, CA.
  • Liu, K., S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. 2020a. A review of android malware detection approaches based on machine learning. IEEE Access 8:124579–607. doi:10.1109/ACCESS.2020.3006143.
  • Liu, P., L. Li, Y. Zhao, X. Sun, and J. Grundy. (2020b). AndroZooOpen: collecting large-scale open source android apps for the research community. In Proceedings of the 17th International Conference on Mining Software Repositories (MSR ‘20). Association for Computing Machinery, New York, NY, USA, 548–52. DOI:10.1145/3379597.3387503
  • Liu, Wang, Japkowicz, Tang, and Zhao. 2021. Research on unsupervised feature learning for Android malware detection based on restricted boltzmann machines. Future Generation Computer Systems 120:91–108. doi:10.1016/j.future.2021.02.015.
  • Lu, X., and , Jiang, F., Zhou, X., Yi, S., Sha, J., Pietro, L. 2019. ASSCA: API sequence and statistics features combined architecture for malware detection. Computer Networks 157:99–111. doi:10.1016/j.comnet.2019.04.007.
  • Maggi, F., Robertson, W., C. Kruegel, and G. Vigna. (2009). Protecting a Moving Target: Addressing Web Application Concept Drift. In Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection (RAID ‘09). Springer-Verlag, Berlin, Heidelberg, 21–40. DOI:10.1007/978-3-642-04342-0_2
  • Mahdavifar, S., Kadir, A. F. A., R. Fatemi, Alhadidi, D., and Ghorbani A. A. (2020). Dynamic android malware category classification using semi-supervised deep learning. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress Calgary, AB, 515–22. IEEE.
  • Mahindru A., and Sangal A. L. 2020. SOMDROID: Android malware detection by artificial neural network trained using unsupervised learning. Springer Berlin Heidelberg doi:10.1007/s12065-020-00518-1.
  • Mahindru, and Sangal. 2021. FSDroid: A feature selection technique to detect malware from android using machine learning techniques: FSDroid. Multimedia Tools and Applications 80 (9):13271–323. doi:10.1007/s11042-020-10367-w.
  • Mantoo B. A. (2020). A hybrid approach with intrinsic feature-based android malware detection using lda and machine learning. In The International Conference on Recent Innovations in Computing Jammu, India, 295–306. Springer.
  • Martin, A., V. Rodriguez-Fernandez, Camacho D., and . 2018. Candyman: Classifying android malware families by modelling dynamic traces with markov chains. Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation 74:121–33. doi:10.1016/j.engappai.2018.06.006.
  • McLaughlin, N., Rincon, J. M., B. Kang, Yerima, S., P. Miller, Sezer, S., Y. Safaei, Trickel, E., Z. Zhao, Doupé, A. et al, et al. (2017). Deep android malware detection. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy Scottsdale, AZ, 301–08.
  • Melbshark. (2019). melbshark/AndroPyTool: A framework for automated extraction of static and dynamic features from Android applications. https://github.com/melbshark/AndroPyTool
  • Mercaldo, and Santone. 2021. Audio signal processing for Android malware detection and family identification. Journal of Computer Virology and Hacking Techniques 17 (2):139–52. doi:10.1007/s11416-020-00376-6.
  • Murtaz, M., Azwar, H., Ali S. B., and Rehman S. A framework for android malware detection and classification. (2018). In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) Bangkok, Thailand, 1–5. IEEE.
  • Naway, A., and W. Li. (2019). Android malware detection using autoencoder.
  • Nicheporuk, A., Savenko, O., A. Nicheporuk, and Y. Nicheporuk. 2020. An android malware detection method based on CNN mixed-data model CEUR Workshop Proceedings Kharkiv, Ukraine. 2732:198–213.
  • Nisa, M., Shah, J. H., S. Kanwal, Raza, M., M. A. Khan, Damaševičius, R., and Blažauskas T. 2020. Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features. Applied Sciences 10 (14):4966. doi:10.3390/app10144966.
  • Onwuzurike, L., E. Mariconti, P. Andriotis, E. Cristofaro, G. Ross, and G. Stringhini. 2016. Mamadroid: detecting android malware by building markov chains of behavioral models. . . https://arxiv.org/abs/1711.07477
  • Onwuzurike, L., E. Mariconti, P. Andriotis, E. Cristofaro, G. Ross, and G. Stringhini. 2017. MaMaDroid: detecting android malware by building markov chains of behavioral models (Extended version). ACM Transactions on Privacy and Security (TOPS) 22 (2):14. 2019.
  • Onwuzurike, L., M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini, and Cristofaro E. D. (2018). A family of droids – Android malware detection via behavioral modeling: Static vs dynamic analysis. In 2018 16th Annual Conference on Privacy, Security and Trust (PST) Belfast, Ireland, (pp. 1–10). IEEE.
  • Pang, Y., Peng, L., Z. Chen, Yang, B., and Zhang H. 2019. Imbalanced learning based on adaptive weighting and Gaussian function synthesizing with an application on Android malware detection. Information Sciences 484:95–112. doi:10.1016/j.ins.2019.01.065.
  • Papernot, N., Mcdaniel, P., Sinha A., and Wellman M. 2016. Towards the science of security and privacy in machine learning. . https://arxiv.org/abs/1611.03814
  • Papernot, and Nicolas. (2018). Characterizing the limits and defenses of machine learning in adversarial settings. PhD thesis, The Pennsylvania State University.
  • Pektaş A., and Acarman T. 2020a. Deep learning for effective Android malware detection using API call graph embeddings. Soft Computing 24 (2):1027–43. doi:10.1007/s00500-019-03940-5.
  • Pektaş A., and Acarman T. 2020b. Learning to detect Android malware via opcode sequences. Neurocomputing 396:599–608. 2020. doi:10.1016/j.neucom.2018.09.102.
  • Pierazzi, F., Pendlebury, F., Cortellazzi J., and Cavallaro L. 2020. Intriguing properties of adversarial ml attacks in the problem space 2020 IEEE Symposium on Security and Privacy San Francisco, CA. 1332–49.
  • Priya P. D., and Visalakshi P. 2020. Detecting android malware using an improved filter based technique in embedded software. Microprocessors and Microsystems 76 doi:10.1016/j.micpro.2020.103115.
  • Qiu J., Zhang J., Luo W., L. Pan, S. Nepal, Y. Wang, and Y. Xiang. 2019. A3CM: automatic capability annotation for android malware. IEEE Access 7 147156–168 doi:10.1109/ACCESS.2019.2946392 .
  • Qiu. 2020. Neural network and deep learning. Beijing: China Machine Press.
  • Rana, and Sung. 2020. Evaluation of advanced ensemble learning techniques for android malware detection. Vietnam Journal of Computer Science 7 (2):145–59. doi:10.1142/S2196888820500086.
  • Rathore, H., Sahay, S. K., Nikam P., and Sewak M. 2020. Robust android malware detection system against adversarial attacks using q-learning. Information Systems Frontiers 1–16. doi:10.1007/s10796-020-10083-8.
  • Ray S. (2019). A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) Faridabad, India, 35–39. IEEE.
  • Rehman, Z.-U., Khan, S. N., K. Muhammad, Lee, J. W., Z. Lv, S. W. Baik, P. A. Shah, K. Awan, and I. Mehmood. 2018. Machine learning-assisted signature and heuristic-based detection of malwares in Android devices. Computers and Electrical Engineering 69:828–41. doi:10.1016/j.compeleceng.2017.11.028.
  • Ribeiro, J., Saghezchi, F. B., G. Mantas, Rodriguez, J., Shepherd, and Abd-Alhameed R. A. 2020. An autonomous host-based intrusion detection system for android mobile devices. Mobile Networks and Applications 25 (1):164–72. doi:10.1007/s11036-019-01220-y.
  • Rosenberg, I., A. Shabtai, L. Rokach, and Y. Elovici. (2017). Generic black-box end-to-end attack against state of the art API call based malware classifiers. https://arxiv.org/abs/1707.05970
  • Salah, A., Shalabi, E., and Khedr W. 2020. A lightweight android malware classifier using novel feature selection methods. Symmetry 12 (5):858. doi:10.3390/sym12050858.
  • Saracino, A., Sgandurra, D., Dini G., and Martinelli F. 2018. MADAM: effective and efficient behavior-based android malware detection and prevention. IEEE Transactions on Dependable and Secure Computing 15 (1):83–97. doi:10.1109/TDSC.2016.2536605.
  • Sihwail, R., Omar, K., and Ariffin K. A. Z. 2018. A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis. International Journal on Advanced Science, Engineering and Information Technology 8 (4–2):1662–71. doi:10.18517/ijaseit.8.4-2.6827.
  • Singh, S., Gera, T., F. Ali, D. Thakur, K. Singh, and K.-S. Kwak. 2021. Understanding research trends in android malware research using information modelling techniques. CMC-COMPUTERS MATERIALS & CONTINUA 66 (3):2655–70. doi:10.32604/cmc.2021.014504.
  • Spolar, N., Cherman, E. A., Monard M. C., and Lee H. D. (2013). Relieff for multi-label feature selection. In Proceedings of the 2013 Brazilian Conference on Intelligent Systems Fortaleza, Brazil.
  • Suarez-Tangil G., and Stringhini G. 2018. Eight years of rider measurement in the android malware ecosystem: evolution and lessons learned. arXiv preprint arXiv:1801.08115. 2018.
  • Suarez-Tangil, G., S. K. Dash, M. Ahmadi, J. Kinder, and L. Cavallaro. (2017). DroidSieve: fast and accurate classification of obfuscated android malware. In Conference on Data and Application Security and Privacy (CODASPY) Scottsdale, AZ,2017 doi:10.1145/3029806.3029825.
  • Taheri, R., Javidan, R., M. Shojafar, Pooranian, Z., A. Miri, and M. Conti. 2020. On defending against label flipping attacks on malware detection systems. Neural Computing and Applications 32 14781–800 doi:10.1007/s00521-020-04831-9.
  • Talha, K. A., Alper, D. I., and Aydin C. 2015. APK auditor: permission-based android malware detection system. Digital Investigation 13:1–14. doi:10.1016/j.diin.2015.01.001.
  • Tiwari S. R., and Shukla R. U. (2018). An android malware detection technique using optimized permission and api with pca. In 2018 Second International Conference on Intelligent Computing and Control Systems Madurai, India, 2611–16 doi:10.1109/ICCONS.2018.8662939. IEEE.
  • Ünver, H. M., and K. Bakour. 2020. Android malware detection based on image-based features and machine learning techniques. SN Applied Sciences 2 (7):1299. doi:10.1007/s42452-020-3132-2.
  • Vasan, D., Alazab, M., S. Wassan, Naeem, H., Safaei B., and Zheng Q. 2020. IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture. Computer Networks 171 (April 2019):107138. doi:10.1016/j.comnet.2020.107138.
  • Vinayakumar, R., Soman, K. P., Poornachandran, and Kumar. 2018. Detecting android malware using long short-term memory (lstm). Journal of Intelligent & Fuzzy Systems 34 (3):1277–88. doi:10.3233/JIFS-169424.
  • Wang, H., J. Si, H. Li, and Y. Guo. (2019). RmvDroid: Towards a reliable Android malware dataset with app metadata. In Proceedings of the 16th International Conference on Mining Software Repositories (MSR ‘19) Montreal, QC. IEEE Press, 404–08. DOI:10.1109/MSR.2019.00067
  • Wang, S., Chen, Z., Yan Q., Ji K., Peng L., and Yang B., Conti, M. 2020. Deep and broad URL feature mining for android malware detection Information Sciences . 513:600–13.
  • Wang, W., X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang. 2014. Exploring permission-induced risk in android applications for malicious application detection. IEEE Transactions on Information Forensics and Security 9 (11):1869–82. doi:10.1109/TIFS.2014.2353996.
  • Wei, F., Y. Li, S. Roy, X. Ou, and Z. Wu. (2017). Deep ground truth analysis of current android malware. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, Cham, 2017.
  • Wen L., and Yu H. 2017. An android malware detection system based on machine learning. AIP Conference Proceedings 1864:020136 doi:10.1063/1.4992953. AIP Publishing LLC.
  • Wiśniewski, and Tumbleson. (2021). Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps. https://ibotpeaches.github.io/Apktool/
  • Witten I. H., and Frank E. 2011. Data mining: Practical machine learning tools and techniques. Acm Sigmod Record 31 (1):76–77. doi:10.1145/507338.507355.
  • Xu, K., Y. Li, R. Deng, K. Chen, and J. Xu. (2019). DroidEvolver: self-evolving Android malware detection system. 2019 IEEE European Symposium on Security and Privacy (EuroS&P) Stockholm, Sweden, 47–62 doi:10.1109/EuroSP.2019.00014.
  • Xu, L., Zhang, D., Jayasena N., and J. Cavazos. 2018. HADM: hybrid analysis for detection of malware Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 London, UK. 16:702–24.
  • Yang, W., D. Kong, T. Xie, and C. A. Gunter. (2017). Malware detection in adversarial settings: exploiting feature evolutions and confusions in Android apps. In Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC 2017). Association for Computing Machinery, New York, NY, USA, 288–302. DOI:10.1145/3134600.3134642
  • Ye J.-X., and Gong X.-L. 2010. A novel fast wrapper for feature subset selection. Journal of Changsha University of Science & Technology(Natural Science) 7 69–73 .
  • Yen Y.-S., and Sun H.-M. 2019. An Android mutation malware detection based on deep learning using visualization of importance from codes. Microelectronics Reliability 93 (October 2018):109–14. doi:10.1016/j.microrel.2019.01.007.
  • Yerima S. Y., and Sezer S. 2019. DroidFusion: A novel multilevel classifier fusion approach for Android malware detection. IEEE Transactions on Cybernetics 49 (2):453–66. doi:10.1109/TCYB.2017.2777960.
  • Yerima, S. Y., S. Sezer, and G. McWilliams. 2014. Analysis of Bayesian classification-based approaches for android malware detection. IET Information Security 8 (1):25–36. doi:10.1049/iet-ifs.2013.0095.
  • Yildiz O., and Doğru I. A. 2019. Permission-based android malware detection system using feature selection with genetic algorithm. International Journal of Software Engineering and Knowledge Engineering 29 (2):245–62. doi:10.1142/S0218194019500116.
  • Yung C.-H., and Juang W.-S. 2017. Static and dynamic integrated analysis scheme for android malware. Journal of Electronic Science and Technology. doi:10.11989/JEST.1674-862X.60804053.
  • Zhang, N., Tan, Y., Yang C., and Li Y. 2021. Deep learning feature exploration for android malware detection. Applied Soft Computing 102:107069. doi:10.1016/j.asoc.2020.107069.
  • Zhang, W., Ren, H., Jiang Q., and K. Zhang. (2015). Exploring feature extraction and elm in malware detection for android devices. In International Symposium on Neural Networks Jeju, KOR, 489–98 doi:10.1007/978-3-319-25393-0_54. Springer.
  • Zhang, X., Marwah, M., Lee I., M. Arlitt, and Goldwasser. 2019. Arlitt. An anomaly contribution explainer for cyber-security applications. . https://arxiv.org/abs/1912.00314v1
  • Zhang, X., Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, and M. Yang. (2020). Enhancing state-of-the-art classifiers with API semantics to detect evolved Android malware. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS ‘20) Virtual Event, USA, 757–70 doi:10.1145/3372297.3417291.
  • Zhao, C., Zheng, W., L. Gong, M. Zhang, and C. Wang. (2018). Quick and accurate android malware detection based on sensitive apis. In 2018 IEEE International Conference on Smart Internet of Things Xi'an, China, 143–48.
  • Zhao, Y., Hu, L., Xiong, H., Qin, Z.-G. 2014. Dynamic analysis scheme of android malware based on sandbox. Netinfo Security 12 21–26 doi:10.3969/j.issn.1671-1122.2014.12.005.
  • Zhou Z. 2016. Machine Learning. Beijing: Tsinghua University Press.
  • Zhou, Y., and X. Jiang. 2012. Dissecting Android malware: characterization and evolution 2012 IEEE Symposium on Security and Privacy San Francisco, CA. 2012:95–109. doi:10.1109/SP.2012.16.
  • Zhu, H.-J., You, Z.-H., Z.-X. Zhu, Shi, W.-L., X. Chen, and L. Cheng. 2018. Droiddet: Effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272:638–46. doi:10.1016/j.neucom.2017.07.030.
  • Zhu, and Goldberg. 2009. Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 3 (1):1–130. doi:10.2200/S00196ED1V01Y200906AIM006.