1,963
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A Cluster Analysis Methodology for the Categorization of Soil Samples for Forensic Sciences Based on Elemental Fingerprint

, , ORCID Icon & ORCID Icon
Article: 2010941 | Received 07 Apr 2021, Accepted 09 Nov 2021, Published online: 20 Dec 2021

References

  • Abidine, M. B., and B. Fergani. 2012. Evaluating C-SVM, CRF and LDA classification for daily activity recognition. In 2012 International Conference on Multimedia Computing and Systems, 272–844. doi:10.1109/ICMCS.2012.6320300.
  • Barbosa, R. M., B. L. Batista, C. V. Barião, R. M. Varrique, V. A. Coelho, A. D. Campiglia, and F. Barbosa. 2015. A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry. Food Chemistry 184:154–59. doi:10.1016/j.foodchem.2015.02.146.
  • Baron, M., J. Gonzalez-Rodriguez, R. Croxton, R. Gonzalez, and R. Jimenez-Perez. 2011. Chemometric study on the forensic discrimination of soil types using their infrared spectral characteristics. Applied Spectroscopy 65 (10):1151–61. doi:10.1366/10-06197.
  • Beutler, F., S. Saito, J. R. Brownstein, C.-H. Chuang, A. J. Cuesta, W. J. Percival, A. J. Ross, N. P. Ross, D. P. Schneider, L. Samushia, et al. 2014. The clustering of galaxies in the SDSS-III Baryon oscillation spectroscopic survey: Signs of neutrino mass in current cosmological data sets. Monthly Notices of the Royal Astronomical Society 444 (4):3501–16. doi:10.1093/mnras/stu1702.
  • Briggs, P. H. 1996. Forty elements by inductively coupled plasma-atomic emission spectrometry. Analytical Methods Manual for the United States Geological Survey, pp.77-94.
  • Ceballos-Magaña, S. G., J. M. Jurado, R. Muñiz-Valencia, A. Alcázar, F. de Pablos, and M. J. Martín. 2012. Geographical authentication of tequila according to its mineral content by means of support vector machines. Food Analytical Methods 5 (2):260–65. doi:10.1007/s12161-011-9233-1.
  • Charrad, M., N. Ghazzali, V. Boiteau, and A. Niknafs. 2014. {NbClust}: An {R} package for determining the relevant number of clusters in a data set. Journal of Statistical Software 61 (6):1–36. doi:10.18637/jss.v061.i06.
  • Chauhan, R., R. Kumar, V. Kumar, K. Sharma, and V. Sharma. 2021. On the discrimination of soil samples by derivative diffuse reflectance UV–vis-NIR spectroscopy and chemometric methods. Forensic Science International 319:110655. doi:10.1016/j.forsciint.2020.110655.
  • Concheri, G., D. Bertoldi, E. Polone, S. Otto, R. Larcher, and A. Squartini. 2011. Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation. PLoS One 6 (6):e20222. doi:10.1371/journal.pone.0020222.
  • Coombs, M. J., B. B. Kotlyar, S. Ludington, H. Folger, and V. G. Mossotti. 2002. Multielement geochemical dataset of surficial materials for the northern Great Basin. US Geological Survey Open-File Report 2:227.
  • Cortes, C., and V. Vapnik. 1995. Support-vector networks. Machine Learning 20 (3):273–97. doi:10.1007/BF00994018.
  • da Costa, N. L., I. A. Castro, and R. Barbosa. 2016. Classification of cabernet sauvignon from two different countries in South America by chemical compounds and support vector machines. Applied Artificial Intelligence 30 (7):679–89. doi:10.1080/08839514.2016.1214416.
  • Delen, D., G. Walker, and A. Kadam. 2005. Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine 34 (2):113–27. doi:10.1016/j.artmed.2004.07.002.
  • Dhote, C. A., A. D. Thakare, and S. M. Chaudhari. 2013. Data clustering using particle swarm optimization and bee algorithm. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 1–5.
  • Dragović, S., and A. Onjia. 2006. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis. Journal of Environmental Radioactivity 89 (2):150–58. doi:10.1016/j.jenvrad.2006.05.002.
  • Elbattah, M., and O. Molloy. 2017. Data-driven patient segmentation using K-means clustering. In Proceedings of the Australasian Computer Science Week Multiconference on - ACSW ’17, 1–8. doi:10.1145/3014812.3014874.
  • Goktepe, A. B., S. Altun, and A. Sezer. 2005. Soil clustering by fuzzy c-means algorithm. Advances in Engineering Software 36 (10):691–98. doi:10.1016/j.advengsoft.2005.01.008.
  • Griol, D., and J. M. Molina. 2015. A sentiment analysis classification approach to assess the emotional content of photographs. In Ambient intelligence-software and applications, edited by Amr Mohamed, Paulo Novais, António Pereira, Gabriel Villarrubia González, Antonio Fernández-Caballero,105–13. Cham: Springer.
  • Hall, M. A. 2000. Correlation-based feature selection for discrete and numeric class machine learning. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), ed. P. Langley, 359–66. Waikato, New Zealand: Morgan Kaufmann Publishers Inc.
  • Hartigan, J. A., and M. A. Wong. 1979. A K-Means clustering algorithm. Applied Statistics 28:100–08. doi:10.2307/2346830.
  • Hu, C., H. Mei, H. Guo, P. Wang, and J. Zhu. 2020. The analysis of soil evidence to associate criminal tool and location. Forensic Science International 309:110231. doi:10.1016/j.forsciint.2020.110231.
  • Jain, A. K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31 (8):651–66. doi:10.1016/j.patrec.2009.09.011.
  • Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. InIJCAI’95 Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 1137–43.
  • Kou, G., Y. Peng, and G. Wang. 2014. Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences 275:1–12. doi:10.1016/j.ins.2014.02.137.
  • Krishnaiah, V., G. Narsimha, and N. S. Chandra. 2013. Diagnosis of lung cancer prediction system using data mining classification techniques. International Journal of Computer Science and Information Technologies 4 (1):39–45.
  • Lantz, B. 2013. Machine learning with R. Packt publishing Ltd.
  • Lee, P. J. 2015. Classification of ophthalmology utilization pattern CMS data using K-Means clustering algorithm. Investigative Ophthalmology & Visual Science 56 (7):2137.
  • Maione, C., B. L. Batista, A. D. Campiglia, F. Barbosa, and R. M. Barbosa. 2016a. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Computers and Electronics in Agriculture 121:101–07. doi:10.1016/j.compag.2015.11.009.
  • Maione, C., E. S. De Paula, M. Gallimberti, B. L. Batista, A. D. Campiglia, F. Barbosa, and R. M. Barbosa. 2016b. Comparative study of data mining techniques for the authentication of organic grape juice based on ICP-MS analysis. Expert Systems with Applications 49:60–73. doi:10.1016/j.eswa.2015.11.024.
  • Maione, C., R. M. Barbosa, V. C. de Oliveira Souza, F. Barbosa, L. R. Togni, J. L. Da Costa, and A. D. Campiglia. 2018. Establishing chemical profiling for ecstasy tablets based on trace element levels and support vector machine. Neural Computing & Applications 30 (3):947–55. doi:10.1007/s00521-016-2736-3.
  • Martin, C., P. Maesen, D. Minchilli, F. Francis, and F. Verheggen. 2021. Forensic taphonomy: Characterization of the gravesoil chemistry using a multivariate approach combining chemical and volatile analyses. Forensic Science International 318:110569. doi:10.1016/j.forsciint.2020.110569.
  • Mazzetto, J. M. L., J. Dieckow, and E. J. Bonfleur. 2018. Factor analysis of organic soils for site discrimination in a forensic setting. Forensic Science International 290:244–50. doi:10.1016/j.forsciint.2018.07.005.
  • Melo, V. F., L. C. Barbar, P. G. P. Zamora, C. E. Schaefer, and G. A. Cordeiro. 2008. Chemical, physical and mineralogical characterization of soils from the Curitiba Metropolitan Region for forensic purpose. Forensic Science International 179 (2–3):123–34. doi:10.1016/j.forsciint.2008.04.028.
  • Owens, P. N., W. H. Blake, L. Gaspar, D. Gateuille, A. J. Koiter, D. A. Lobb, E. L. Petticrew, D. G. Reiffarth, H. G. Smith, and J. C. Woodward. 2016. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Science Reviews 162:1–23. doi:10.1016/j.earscirev.2016.08.012.
  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. http://www.r-project.org/.
  • Rad, M. R. N., H. R. Fanaei, and M. R. P. Rad, 2015. Application of Artificial Neural Networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo L.). Scientia Horticulturae 181:108–12. doi:10.1016/j.scienta.2014.10.025.
  • Rahmani, M. K. I., N. Pal, and K. Arora. 2014. Clustering of image data using K-means and fuzzy K-means. International Journal of Advanced Computer Science and Applications 5 (7):160–63.
  • Reidy, L., K. Bu, M. Godfrey, and J. V. Cizdziel. 2013. Elemental fingerprinting of soils using ICP-MS and multivariate statistics: A study for and by forensic chemistry majors. Forensic Science International 233 (1–3):37–44. doi:10.1016/j.forsciint.2013.08.019.
  • Sumbaly, R., N. Vishnusri, and S. Jeyalatha. 2014. Diagnosis of breast cancer using decision tree data mining technique. International Journal of Computer Applications 98 (10):16–24. doi:10.5120/17219-7456.
  • Tan, P.-N., M. Steinbach, and V. Kumar. 2005. Introduction to data mining. Boston, USA: Pearson Addison Wesley.
  • Teixeira, S., A. M. Guimarães, C. A. Proença, J. C. F. Da Rocha, and E. F. Caires. 2014. Data mining algorithms for prediction of soil organic matter and clay based on Vis-NIR spectroscopy, International Journal of Agriculture and Forestry 4 (4): 310-316 Doi:10.5923/j.ijaf.20140404.08
  • Thanasoulias, N. C., E. T. Piliouris, M.-S. E. Kotti, and N. P. Evmiridis. 2002. Application of multivariate chemometrics in forensic soil discrimination based on the UV-Vis spectrum of the acid fraction of humus. Forensic Science International 130 (2–3):73–82. doi:10.1016/S0379-0738(02)00369-9.
  • Wald, C. 2015. Forensic science: The soil sleuth. Nature News 520 (7548):422. doi:10.1038/520422a.
  • Wang, G., B. Xu, and W. Jiang. 2016. Fault diagnosis for glutamic acid fermentation process using fuzzy clustering. In 2016 Chinese Control and Decision Conference (CCDC 2016) Yinchuan, China, 5530–34.
  • Wu, W., A.-D. Li, X.-H. He, R. Ma, H.-B. Liu, and J.-K. Lv. 2018. A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Computers and Electronics in Agriculture 144:86–93. doi:10.1016/j.compag.2017.11.037.
  • Xu, X., C. Du, F. Ma, Y. Shen, and J. Zhou. 2020. Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies. Forensic Science International 310:110222. doi:10.1016/j.forsciint.2020.110222.