2,084
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Deciding Heavy Metal Levels in Soil Based on Various Ecological Information through Artificial Intelligence Modeling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2014189 | Received 22 Jun 2021, Accepted 30 Nov 2021, Published online: 11 Dec 2021

References

  • Abu Doush, I., and A. Sawalha. 2020. Automatic music composition using genetic algorithm and artificial neural networks. Malaysian Journal of Computer Science 33 (1):35–1265.
  • Alam, R., Z. Ahmed, and M. F. Howladar. 2020. Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development 10:100311. doi:10.1016/j.gsd.2019.100311.
  • Alengebawy, A., S. T. Abdelkhalek, S. R. Qureshi, and M. Q. Wang. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9 (3):42–85. doi:10.3390/toxics9030042.
  • Arefi, I. H., M. Kafi, and H. Khazaei. 2013. Effect of different levels of nitrogen, phosphorus and potassium nutrient elements on yield, yield components and of Persian Shallot (Allium altissimum). International Journal of Agriculture 3 (3):516.
  • Bagheri, M., A. Bazvand, and M. Ehteshami. 2017. Application of artificial intelligence for the management of landfill leachate penetration into groundwater. And Assessment of Its Environmental Impacts, Journal of Cleaner Production 149 (Pages):784–96.
  • Bhagat, S. K., K. Pyrgaki, S. Q. Salih, T. Tiyasha, U. Beyaztas, S. Shahid, and Z. M. Yaseen. 2021. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model. Chemosphere 276:130162. doi:10.1016/j.chemosphere.2021.130162.
  • Briot, J. P. 2021. From artificial neural networks to deep learning for music generation: History, concepts and trends. Neural Computing and Applications 33 (1):39–65. doi:10.1007/s00521-020-05399-0.
  • Bui, X. N., H. B. Bui, and H. Nguyen (2021). A Review of Artificial Intelligence Applications in Mining and Geological Engineering. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining (pp. 109–42). Springer, Cham.
  • Can, H., I. I. Ozyigit, M. Can, A. Hocaoglu-Ozyigit, and I. E. Yalcin. 2021. Environment-Based Impairment in Mineral Nutrient Status and Heavy Metal Contents of Commonly Consumed Leafy Vegetables Marketed in Kyrgyzstan: A Case Study for Health Risk Assessment. Biological Trace Element Research 199 (3):1123–44. doi:10.1007/s12011-020-02208-6.
  • Chen, M., U. Challita, W. Saad, C. Yin, and M. Debbah. 2019. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials 21 (4):3039–71. doi:10.1109/COMST.2019.2926625.
  • Dan-Badjo, A. T., O. Z. Ibrahim, Y. Guéro, J. L. Morel, C. Feidt, and G. Echevarria. 2019. Impacts of artisanal gold mining on soil, water and plant contamination by trace elements at Komabangou, Western Niger. Journal of Geochemical Exploration 205:106328. doi:10.1016/j.gexplo.2019.06.010.
  • Efe, R., A. Soykan, I. Curebal, and S. Sonmez. 2014. Geomorphic and ecologic Fundamentals of the air quality in the vicinity of Kaz Mountains. Procedia-Social and Behavioral Sciences 120:335–46. doi:10.1016/j.sbspro.2014.02.111.
  • Efe, R., S. Sonmez, I. Curebal, and A. Soykan. 2015. Ecological conditions and vegetation of subalpine zone of Kaz Mountain (Mount Ida, NW Turkey). In Climate Change Impacts on High-Altitude Ecosystems, ed. Efe, Recep, Ozturk, Munir, and Atalay, Ibrahim, 591–608. Cham: Springer.
  • Emenike, P. C., I. T. Tenebe, J. B. Neris, D. O. Omole, O. Afolayan, C. U. Okeke, and I. K. Emenike. 2020. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environmental Pollution 265:114795.
  • Fangfang, F., A. Alagumalai, and O. Mahian. 2021. Sustainable biodiesel production from waste cooking oil: ANN modeling and environmental factor assessment. Sustainable Energy Technologies and Assessments 46:101265. doi:10.1016/j.seta.2021.101265.
  • Guo, X., and J. Wang. 2021. Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. Journal of Hazardous Materials 402:123709. doi:10.1016/j.jhazmat.2020.123709.
  • Hanandeh, A., Z. Mahdi, and M. S. Imtiaz. 2021. Modelling of the adsorption of Pb, Cu and Ni ions from single and multi-component aqueous solutions by date seed derived biochar: Comparison of six machine learning approaches. Environmental Research 192:110338. doi:10.1016/j.envres.2020.110338.
  • Hossen, M. A., A. I. H. Chowdhury, M. R. A. Mullick, and A. Hoque. 2021. Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environmental Nanotechnology. Monitoring & Management 100469: 1–14.
  • Inakollu, P., T. Philip, A. K. Rai, F. Y. Yueh, and J. P. Singh. 2009. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochimica Acta Part B: Atomic Spectroscopy 64 (1):99–104. doi:10.1016/j.sab.2008.11.001.
  • Jia, B., R. Dong, and J. Du. 2020. Ozone concentrations prediction in Lanzhou, China, using chaotic artificial neural network. Chemometrics and Intelligent Laboratory Systems 204:104098. doi:10.1016/j.chemolab.2020.104098.
  • Jiang, Y., Z. Nan, and S. Yang. 2013. Risk assessment of water quality using Monte Carlo simulation and artificial neural network method. Journal of Environmental Management 122:130–36. doi:10.1016/j.jenvman.2013.03.015.
  • Jiang, Z., Z. Guo, C. Peng, X. Liu, Z. Zhou, and X. Xiao. 2021. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures. Environmental Pollution 282:117038. doi:10.1016/j.envpol.2021.117038.
  • Jothimani, K., D. Arulbalachandran, and K. Yasmin. 2017. Amelioration of Environmental Stress for Sustainable Crop Productivity. In Sustainable Agriculture towards Food Security Dhanarajan, Arulbalachandran, 327–48. Singapore: Springer.
  • Karahan, F., I. I. Ozyigit, I. A. Saracoglu, I. E. Yalcin, A. H. Ozyigit, and A. Ilcim. 2020. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biological Trace Element Research 197 (1):316–29. doi:10.1007/s12011-019-01974-2.
  • Kassem, Y., H. Gokcekus, and M. R. M. Maliha. 2021. Identifying most influencing input parameters for predicting chloride concentration in groundwater using an ANN approach. Environmental Earth Sciences 80 (7):248. doi:10.1007/s12665-021-09541-6.
  • Li, X., B. Yang, J. Yang, Y. Fan, X. Qian, and H. Li. 2021. Magnetic properties and its application in the prediction of potentially toxic elements in aquatic products by machine learning. Science of the Total Environment 783:147083. doi:10.1016/j.scitotenv.2021.147083.
  • Lu, H., H. Li, T. Liu, Y. Fan, Y. Yuan, M. Xie, and X. Qian. 2019. Simulating heavy metal concentrations in an aquatic environment using artificial intelligence models and physicochemical indexes. Science of the Total Environment 694:133591. doi:10.1016/j.scitotenv.2019.133591.
  • Maleki, H., A. Sorooshian, G. Goudarzi, Z. Baboli, Y. T. Birgani, and M. Rahmati. 2019. Air pollution prediction by using an artificial neural network model. Clean Technologies and Environmental Policy 21 (6):1341–52. doi:10.1007/s10098-019-01709-w.
  • Marković, J., M. Jović, I. Smičiklas, L. Pezo, M. Šljivić-Ivanović, A. Onjia, and A. Popović. 2016. Chemical speciation of metals in unpolluted soils of different types: Correlation with soil characteristics and an ANN modelling approach. Journal of Geochemical Exploration 165:71–80. doi:10.1016/j.gexplo.2016.03.004.
  • Mojid, M. A., A. B. M. Z. Hossain, and M. A. Ashraf. 2019. Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties. Environmental Pollution 255:113355. doi:10.1016/j.envpol.2019.113355.
  • Mustafa, H. M., A. Mustapha, G. Hayder, and A. Salisu, “Applications of IoT and Artificial Intelligence in Water Quality Monitoring and Prediction: A Review,” 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2021, pp. 968–75.
  • Nourani, V., H. Gokcekus, I. K. Umar, and H. Najafi. 2020. An emotional artificial neural network for prediction of vehicular traffic noise. Science of the Total Environment 707:136134. doi:10.1016/j.scitotenv.2019.136134.
  • Olawoyin, R., A. Nieto, R. L. Grayson, F. Hardisty, and S. Oyewole. 2013. Application of artificial neural network (ANN)–self-organizing map (SOM) for the categorization of water, soil and sediment quality in petrochemical regions. Expert Systems with Applications 40 (9):3634–48. doi:10.1016/j.eswa.2012.12.069.
  • Oonk, S., and J. Spijker. 2015. A supervised machine-learning approach towards geochemical predictive modelling in archaeology. Journal of Archaeological Science 59:80–88. doi:10.1016/j.jas.2015.04.002.
  • Ozyigit, I. I., Z. Severoglu, R. Vatansever, and M. Ozturk. 2015. Soil–Plant Interactions in the High-Altitude Ecosystems: A Case Study from Kaz Dagi (Mount Ida), Turkey. In Climate Change Impacts on High-Altitude Ecosystems, ed. Ozturk, Munir, Hakeem, Khalid Rehman, Hanum, I. Faridah, and Efe, Recep, 343–60. Cham: Springer.
  • Pearce, N. J., J. A. Westgate, W. T. Perkins, and S. J. Preece. 2004. The application of ICP-MS methods to tephrochronological problems. Applied Geochemistry 19 (3):289–322. doi:10.1016/S0883-2927(03)00153-7.
  • Qaderi, F., and E. Babanezhad. 2017. Prediction of the groundwater remediation costs for drinking use based on quality of water resource, using artificial neural network. Journal of Cleaner Production 161:840–49. doi:10.1016/j.jclepro.2017.05.187.
  • Sari, M., and B. G. Cetiner. 2009. Predicting effect of physical factors on tibial motion using artificial neural networks. Expert Systems with Applications 36 (6):9743–46. doi:10.1016/j.eswa.2009.02.030.
  • Sayo, S., J. M. Kiratu, and G. S. Nyamato. 2020. Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya. Scientific African 8:e00337. doi:10.1016/j.sciaf.2020.e00337.
  • Sermpinis, G., A. Karathanasopoulos, R. Rosillo, D. de La Fuente . 2021. Neural networks in financial trading. Annals of Operations Research. 297(1–2):293–308. doi:10.1007/s10479-019-03144-y.
  • Shadrin, D., M. Pukalchik, E. Kovaleva, and M. Fedorov. 2020. Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicology and Environmental Safety 194:110410. doi:10.1016/j.ecoenv.2020.110410.
  • Shahmansouri, A. A., M. Yazdani, S. Ghanbari, H. A. Bengar, A. Jafari, and H. F. Ghatte. 2021. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production 279:123697. doi:10.1016/j.jclepro.2020.123697.
  • Shams, S. R., A. Jahani, S. Kalantary, M. Moeinaddini, and N. Khorasani. 2021. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Climate 37:100837. doi:10.1016/j.uclim.2021.100837.
  • Suarez-Paba, M. C., A. M. Cruz, and F. Munoz. 2020. Emerging Natech risk management in Colombia: A survey of governmental organizations. Safety Science 128:104777. doi:10.1016/j.ssci.2020.104777.
  • Turan, O., H. Ozdemir, and G. Demir. 2020. Deposition of heavy metals on coniferous tree leaves and soils near heavy urban traffic. Frontiers in Life Sciences and Related Technologies 1 (1):35–41.
  • Uchimiya, M., D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams, and T. Yoshihara. 2020. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry 68 (46):12856–69. doi:10.1021/acs.jafc.0c00183.
  • Vera, J. B., M. C. Bisinoti, C. D. Amaral, and M. H. Gonzalez. 2021. ICP-quadrupole MS for accurate determination of chromium in environmental and food matrices. Environmental Nanotechnology, Monitoring & Management 15:100421. doi:10.1016/j.enmm.2020.100421.
  • Wolski, G. J., and A. Kruk. 2020. Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis. Ecological Indicators 113:106160. doi:10.1016/j.ecolind.2020.106160.
  • Wu, Q., W. Hu, H. Wang, P. Liu, X. Wang, and B. Huang. 2021. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment 780:146557. doi:10.1016/j.scitotenv.2021.146557.
  • Yahia, E. M., P. García-Solís, and M. E. M. Celis. 2019. Chapter 2 - Contribution of fruits and vegetables to human nutrition and health. In Postharvest physiology and biochemistry of fruits and vegetables, ed. E. M. Yahia, 19–45. Sawston, Cambridge, UK: Woodhead publishing.
  • Yalcin, I. E., I. I. Ozyigit, I. Dogan, G. Demir, and C. Yarci. 2020. Using the Turkish red pine tree to monitor heavy metal pollution. Polish Journal of Environmental Studies 29 (5):3881–89. doi:10.15244/pjoes/114505.
  • Zhang, H., S. Yin, Y. Chen, S. Shao, J. Wu, M. Fan, C. Gao, and C. Gao. 2020. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. Journal of Cleaner Production 273:122858. doi:10.1016/j.jclepro.2020.122858.
  • Zhang, Z., M. W. Beck, D. A. Winkler, B. Huang, W. Sibanda, and H. Goyal; written on behalf of AME Big-Data Clinical Trial Collaborative Grou. 2018. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Annals of Translational Medicine 6 (11):216. doi:10.21037/atm.2018.05.32.
  • Zhou, P., Y. Zhao, Z. Zhao, and T. Chai. 2015. Source mapping and determining of soil contamination by heavy metals using statistical analysis, artificial neural network, and adaptive genetic algorithm. Journal of Environmental Chemical Engineering 3 (4):2569–79. doi:10.1016/j.jece.2015.08.003.