1,922
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A Novel Multi-Neural Ensemble Approach for Cancer Diagnosis

ORCID Icon, &
Article: 2018182 | Received 01 May 2021, Accepted 09 Dec 2021, Published online: 24 Dec 2021

References

  • Abdoh, S. F., M. A. B. O. Rizka, and F. A. Maghraby. 2018. Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques. IEEE Access 6:59475–1456. doi:10.1109/ACCESS.2018.2874063.
  • Adem, K., S. Kiliçarslan, and O. Cömert. 2019. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Systems With Applications 115:557–64. doi:10.1016/j.eswa.2018.08.050.
  • Allemani, C., H. K. Weir, H. Carreira, R. Harewood, D. Spika, X.-S. Wang, F. Bannon, Ahn, J.V., Johnson, C.J., Bonaventure, A., Marcos-Gragera, R., et al. 2014. Global surveillance of cancer survival 1995 – 2009 : Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (concord-2). The Lancet 385 (9972):977-1010. doi:10.1016/S0140-6736(14)62038-9.
  • Altman, N.S. An introduction to kernel and nearest neighbor nonparametric regression. 1992 The American Statistician 46 (3):175-185. June.
  • Bhat, A., R. Shah, G. Rasool Bhat, S. Verma, V. Sharma, I. Sharma, M. Pandita, et al. 2019a. Association of ARID5B and IKZF1 variants with leukemia from Northern India. Genetic Testing and Molecular Biomarkers 23 (3):176–79.
  • Bhat, G. H. R., A. Bhat, S. Verma, I. Sethi, and R. Shah. 2019b. Genetic variant rs10937405 of tp63 and susceptibility to lung cancer risk in north indian population. Journal of Genetics 98 (2):1–6. doi:10.1007/s12041-019-1102-5.
  • Bourlard, H., and Y. Kamp. 1988. Auto-Association by multilayer perceptrons and singular value decomposition. Biological Cybernetics 59 (4–5):291–94. doi:10.1007/BF00332918.
  • Bray, F., J. Ferlay, and I. Soerjomataram, Siegel, R.L., Torre, L.A., Jemal, A. 2020. “Global cancer statistics 2018 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.” Ca-a Cancer Journal for Clinicians 70 (4): 313-313. doi:10.3322/caac.21492.
  • Breiman, L. 2001. Random forests. Otras Caracteristicas 1–33. doi:10.1017/CBO9781107415324.004.
  • Ceylan, Z., and E. Pekel. 2017. Comparison of multi-label classification methods for prediagnosis of cervical cancer. Graphical Models 21:22.
  • Chaddad, A., C. Desrosiers, M. Toews, and B. Abdulkarim. 2017. Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget 8 (61):104393–407.
  • Chen, D., K. Xing, D. Henson, L. Sheng, A. M. Schwartz, and X. Cheng, The George, The George, and Washington Dc. 2009. “Developing prognostic systems of cancer patients by ensemble clustering.” 2009(i). doi:10.1155/2009/632786.
  • Chen, H., J. Gao, D. Zhao, H. Song, and Q. Su. 2021. Review of the research progress in deep learning and biomedical image analysis till 2020 |. Journal of Image and Graphics 26 (3).
  • Chen, Y.-C., W.-C. Ke, and H.-W. Chiu. 2014. Risk classi fi cation of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine 48:1–7. doi:10.1016/j.compbiomed.2014.02.006.
  • Chicco, D., and C. Rovelli. 2019. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS ONE 14 (1):1–28. doi:10.1371/journal.pone.0208737.
  • Cho, S.-B., and H.-H. Won. 2003. “Machine learning in DNA microarray analysis for cancer classification.” Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics 2003-Volume, Adelaide, Australia,19, 189–98.
  • Coccia, M., and M. Bellitto. 2018. Human progress and its socioeconomic effects in society. Journal of Economic and Social Thought 5 (2):160–78. doi:10.1453/jest.v5i2.1649.
  • Coccia, M. 2016. Problem-driven innovations in drug discovery: Co-evolution of the patterns of radical innovation with the evolution of problems. Health Policy and Technology 5 (2):143–55. doi:10.1016/j.hlpt.2016.02.003.
  • Coccia, M. 2017. “Sources of disruptive technologies for industrial change.“ L'industria 38(1):97–120. doi:00197416. doi:10.1430/87140.
  • Coccia, M. 2019 November. “Why do nations produce science advances and new technology?” Technology in Society. 59(101124):1–9. doi:10.1016/j.techsoc.2019.03.007.
  • Coccia, M. 2020, February. “Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence.” ( art. n. 101198) Technology in Society 60:1–11. doi: 10.1016/j.techsoc.2019.101198.
  • Cooley, M. E. 2000. Symptoms in adults with lung cancer : A systematic research review. Journal of Pain and Symptom Management 19 (2):137–53.
  • Cornell, R. F., and J. Palmer. 2012. Adult acute leukemia. YMDA 58 (4):219–38. doi:10.1016/j.disamonth.2012.01.011.
  • Cruz, C. S. D., L. T. Tanoue, and R. A. Matthay. 2011. Lung cancer: Epidemiology, etiology, and prevention. Clinics in chest medicine 32 (4):605-644. doi:10.1016/j.ccm.2011.09.001.
  • Davis, A. S., A. J. Viera, and M. D. Mead. 2014. Leukemia: An overview for primary care. American Family Physician 89 (9):731–38.
  • Deshmukh, P. B., and K. L. Kashyap. 2022. Solution Approaches for Breast Cancer Classification Through Medical Imaging Modalities Using Artificial Intelligence. In Smart Trends in Computing and Communications (pp. 639-651). Springer, Singapore.
  • Devi, M. A., S. Ravi, J. Vaishnavi, and S. Punitha. 2016. Classification of cervical cancer using artificial neural networks. Procedia - Procedia Computer Science 89:465–72. doi:10.1016/j.procs.2016.06.105.
  • Evans, B. P. 2019. Population-based ensemble learning with tree structures for classification. Victoria University of Wellington, Te Herenga Waka.
  • Fatlawi, H. K. 2017. Enhanced classification model for cervical cancer dataset based on cost sensitive classifier. International Journal of Computer Techniques 4 (4):115–20.
  • Ferlay, J. 2018. “Estimating the global cancer incidence and mortality in 2018 : GLOBOCAN sources and methods.” 1–13. doi:10.1002/ijc.31937.
  • Fernandes, K., D. Chicco, and J. S. Cardoso. 2018. “Supervised deep learning embeddings for the prediction of cervical cancer diagnosis.” Cdc 1–20. doi:10.7717/peerj-cs.154.
  • Fernandes, K., J. S. Cardoso, and J. Fernandes. 2017. Transfer learning with partial observability applied to cervical cancer screening. In Iberian conference on pattern recognition and image analysis (pp. 243-250). Springer, Cham. doi:10.1007/978-3-319-58838-4.
  • Fradkin, D., I. Muchnik, and D. Schneider. 2005. “Machine learning methods in the analysis of lung cancer survival data.” DIMACS Technical Report 2005–35.2014
  • Gupta, Surbhi, and Manoj Kumar Gupta. 2021b. “Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm.” The Computer Journal.
  • Gupta, M., C. Das, A. Roy, G. R. Pillai, and K. Patole 2020. Region of interest identification for cervical cancer images, Proceedings - International Symposium on Biomedical Imaging 2020-April,9098587, Iowa City, IA, USA, pp. 1293–96
  • Gupta, S., and M. Gupta. 2020. An approach based on neural learning for diagnosis of prostate cancer. Journal of Natural Remedies 21 (3):110–18. https://jnronline.com/ojs/index.php/about/article/view/108.
  • Gupta, S., and M. Gupta. “Deep learning for brain tumor segmentation using magnetic resonance images.” In 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Melbourne, Australia, pp. 1–6. IEEE, 2021.
  • Gupta, S., and M. Kumar Gupta. 2021a. Computational model for prediction of malignant mesothelioma diagnosis. The Computer Journal. Doi: 10.1093/comjnl/bxab146
  • Gupta, S., and M. Kumar Gupta. 2021b. “A comprehensive data‐level investigation of cancer diagnosis on imbalanced data.” Computational Intelligence. https://doi.org/10.1111/coin.12452
  • Gupta, S., and M. Kumar. “Prostate cancer prognosis using multi-layer perceptron and class balancing techniques.” In 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), Jaypee Institute of Information Technology, Noida, India, pp. 1–6. 2021.
  • Gupta, S., and Y. Kumar. 2022. Cancer prognosis using artificial intelligence-based techniques. SN Computer Science 3 (1):1–8.
  • Gupta, Surbhi, and Manoj Kumar Gupta. 2021. A comparative analysis of deep learning approaches for predicting breast cancer survivability. Archives of Computational Methods in Engineering 1–17.
  • Holm, S. 1979. Board of the Foundation of the Scandinavian Journal of Statistics. 6 (2):65–70.
  • Hu, X. U. E., and Y. Zebo. 2019. Diagnosis of mesothelioma with deep learning. Oncology Letters 17 (2):1483–90. doi:10.3892/ol.2018.9761.
  • Ilhan, H. O., and E. Celik. 2017. “The mesothelioma disease diagnosis with artificial intelligence methods.” Application of Information and Communication Technologies, AICT 2016 - Conference Proceedings, Baku, Azerbaijan. DOI:10.1109/ICAICT.2016.7991825.
  • Islami, F., A. Goding Sauer, K. D. Miller, R. L. Siegel, S. A. Fedewa, E. J. Jacobs, A. Jemal . 2018. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA: A Cancer Journal for Clinicians 68 (1):31–54. doi:10.3322/caac.21440.
  • K. P. Bennett, and O. L. Mangasarian. 2011. Optimization methods and software robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1 (1):23-34. doi:10.1080/10556789208805504.
  • Kaur, M., and B. Singh. 2019. Diagnosis of Malignant Pleural Mesothelioma Using KNN. In: Krishna C., Dutta M., Kumar R. (eds) Proceedings of 2nd International Conference on Communication, Computing and Networking. Lecture Notes in Networks and Systems, vol 46., NITTTR Chandigarh, India. DOI:10.1109/icasic.1996.562734.
  • Kavakiotis, I., O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda. 2016. Machine learning and data mining. Computational and Structural Biotechnology Journal. doi:10.1016/j.csbj.2016.12.005.
  • Kawakami, E., J. Tabata, N. Yanaihara, T. Ishikawa, K. Koseki, Y. Iida, A. Okamoto . 2019. “Application of arti fi cial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers.” Clinical Cancer Research 25 (10):3006-3015. doi:10.1158/1078-0432.CCR-18-3378.
  • Key, T. J., P. K. Verkasalo, and E. Banks. 2001. Reviews Epidemiology of Breast Cancer. The Lancet Oncology 2 (3): 133-140.
  • Kohli, R., A. Garg, S. Phutela, Y. Kumar, and S. Jain. 2021. an improvised model for securing cloud-based E-healthcare systems. In IoT in healthcare and ambient assisted living, 293–310. Singapore: Springer.
  • Kononenko, I. 2001. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23 (1):89–109. doi:10.1016/S0933-3657(01)00077-X.
  • Korbar, B., A. Olofson, A. Miraflor, A. Suriawinata, and S. Hassanpour. 2017. Deep learning for classification of colorectal polyps on whole-slide images. Journal of Pathology Informatics 8 (1):A11.
  • Kourou, K., T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. 2015a. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13:8–17. doi:10.1016/j.csbj.2014.11.005.
  • Kumar, U. K., M. B. Sai Nikhil, and K. Sumangali. 2017, August. Prediction of breast cancer using voting classifier technique. In 2017 IEEE international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM) (pp. 108-114). IEEE.
  • Kumar, Y., K. Sood, S. Kaul, and R. Vasuja. 2020. Big data analytics and its benefits in healthcare. In Big data analytics in healthcare, 3–21. Cham: Springer.
  • Kumar, Y., and M. Mahajan. 2019. Intelligent behavior of fog computing with IOT for healthcare system. International Journal of Scientific & Technology Research 8 (7):674–79.
  • Kumar, Y., and R. Singla. 2021. “Federated learning systems for healthcare: perspective and recent progress.” In Federated learning systems. studies in computational intelligence, R. M.h. and G. M.m. ed., vol. 965, Cham: Springer. doi:10.1007/978-3-030-70604-3_6.
  • Kumar, Y., S. Gupta, R. Singla, and Y.-C. Hu. 2021. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Archives of Computational Methods in Engineering (2021):1–28.
  • Kumar, Y. 2020. Recent advancement of machine learning and deep learning in the field of healthcare system. In R. Srivastava, P. Kumar Mallick, S. Swarup Rautaray & M. Pandey (Ed.), Computational Intelligence for Machine Learning and Healthcare Informatics (pp. 77-98). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110648195-005
  • Lecun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Levine, A. B., C. Schlosser, J. Grewal, R. Coope, S. J. M. Jones, and S. Yip. 2019. Rise of the machines : Advances in deep learning for cancer diagnosis. TRENDS in CANCER xx:1–13. doi:10.1016/j.trecan.2019.02.002.
  • Liu, Y., and A. Xiaomei. 2017, October. A classification model for the prostate cancer based on deep learning. In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-6). IEEE.
  • Lu, M., Fan, Z., Xu, B., Chen, L., Zheng, X., Li, J., … & Jiang, J. (2020). Using machine learning to predict ovarian cancer. International Journal of Medical Informatics, 141, 104195
  • Lynch, C. M., B. Abdollahi, J. D. Fuqua, A. R. De Carlo, J. A. Bartholomai, R. N. Balgemann, V. H. Van Berkel, and H. B. Frieboes. 2017. International journal of medical informatics prediction of lung cancer patient survival via supervised machine learning classi fi cation techniques. International Journal of Medical Informatics 108 (September):1–8. doi:10.1016/j.ijmedinf.2017.09.013.
  • Lynch, C. M., V. H. Van Berkel, and H. B. Frieboes. 2017. Application of unsupervised analysis techniques to lung cancer patient data. PLoS One 12 (9): e0184370.
  • Maria, I. J., T. Devi, and D. Ravi. 2020. Machine learning algorithms for diagnosis of leukemia. IJSTR 9 (1):267–70.
  • Masters, T. 1993. Probabilistic neural networks. Practical Neural Network Recipies in C++ 3:201–22. doi:10.1016/b978-0-08-051433-8.50017-3.
  • Mei, L., V. Jaitly, I. Wang, H. Zhihong, L. Chen, M. Wahed, Z. Kanaan, A. Rios, and A. N. D. Nguyen. “Application of deep learning on predicting prognosis of acute myeloid leukemia with cytogenetics, age, and mutations.” arXiv preprint arXiv:1810.13247 (2018).
  • Miao, W., C. Yan, H. Liu, and Q. Liu. 2018. Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks. Bioscience Reports 38 (3).
  • Mukherjee, S. 2018. Malignant mesothelioma disease diagnosis using data mining techniques. Applied Artificial Intelligence 32 (3):293–308. doi:10.1080/08839514.2018.1451216.
  • Nilashi, A. M., and O. Ibrahim. 2017. “An analytical method for diseases prediction using machine learning techniques.” Computers and Chemical Engineering. doi:10.1016/j.compchemeng.2017.06.011.
  • Orhan, E., A. Cetin Tanrikulu, A. Abakay, and F. Temurtas. 2012. An approach based on probabilistic neural network for diagnosis of mesothelioma’s disease. Computers and Electrical Engineering 38 (1):75–81. doi:10.1016/j.compeleceng.2011.09.001.
  • Parthiban, L, Latchoumi, T.P. 2017. Abnormality detection using weighed particle swarm optimization and smooth support vector machine. Biomedical Research 28 (11):4749–51.
  • Piao, Y., M. Piao, and K. Ho Ryu. 2017. Crossmark. Computers in Biology and Medicine 80 (September 2016):39–44. doi:10.1016/j.compbiomed.2016.11.008.
  • Powers, D. M. W. “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation.” arXiv preprint arXiv:2010.16061 (2020).
  • Reid, A., N. De Klerk, and A. W. Bill Musk. 2011. “Does exposure to asbestos cause ovarian cancer ? a systematic literature review and meta-analysis.” Cancer Epidemiology and Prevention Biomarkers 20(7): 1287-1295. doi:10.1158/1055-9965.EPI-10-1302.
  • Reid, B. M., J. B. Permuth, and T. A. Sellers. 2017. “Epidemiology of ovarian cancer : A review.” Cancer Biology & Medicine 14 (1): 9. doi:10.20892/j.2095-3941.2016.0084.
  • Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 (6):386.
  • Rumelhart, D. E., and G. E. Hintont, Williams, R.J. 1986. “Learning representations by back-propagating errors.” Nature 323 (6088): 533-536:.
  • Salah, H. T., I. N. Muhsen, M. E. Salama, T. Owaidah, and S. K. Hashmi. 2019. “Machine learning applications in the diagnosis of leukemia : Current trends and future directions.” International Journal of Laboratory Hematology 41 (6): 717-725. doi:10.1111/ijlh.13089.
  • Sara, F., S. Asadi, and M. W. Kattan. 2019. A comprehensive data level analysis for cancer diagnosis on imbalanced data. Journal of Biomedical Informatics 90. doi:10.1016/j.jbi.2018.12.003.
  • Saygili, A. 2019. “Classification and diagnostic prediction of breast cancers via different classification and diagnostic prediction of breast cancers via different classifiers.” International Scientific and Vocational Studies Journal 2 (2): 48-56. no. December 2018
  • Seera, M., and C. Peng Lim. 2013. “A hybrid intelligent system for medical data classification.” Expert Systems With Applications. doi:10.1016/j.eswa.2013.09.022.
  • Shedden, K., Taylor, J. M., Enkemann, S. A., Tsao, M. S., Yeatman, T. J., Gerald, W. L., … and Sharma, A. 2008. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study: Director’s Challenge Consortium for the molecular classification of lung adenocarcinoma. Nature medicine, 14(8), 822.
  • Shouval, R., M. Labopin, N. C. Gorin, D. Bomze, M. Houhou, D. Blaise, A. Nagler . 2019. Individualized prediction of leukemia‐free survival after autologous stem cell transplantation in acute myeloid leukemia. Cancer 125 (20):3566–73.
  • Sinigaglia, R., Þ. G. B. Cosimo Gigante, Þ. Stefania Varotto, L. Zanesco, and S. Turra. 2008. Musculoskeletal manifestations in pediatric acute leukemia. Journal of Pediatric Orthopaedics 28 (1):20–28.
  • Skaug, K., G. E. Eide Msci, and A. Gulsvik. 2007. Prevalence and predictors of symptoms in the terminal stage of lung cancer *. CHEST 131 (2):389–94. doi:10.1378/chest.06-1233.
  • Størvold, H. L., M. Aldrin, Ø. Borgan, A. Frigessi, H. M. Bøvelstad, S. Nyga, and O. C. Lingjærde. 2007. “Gene expression predicting survival from microarray data — A comparative study.” Bioinformatics 23 (16):2080–87. doi:10.1093/bioinformatics/btm305.
  • Sumbaly, R. 2014. Diagnosis of breast cancer using decision tree data mining technique. International Journal of Computer Applications 98 (10):16–24.
  • Sun, W., M. Jiang, J. Dang, P. Chang, and F.-F. Yin. 2018. “Effect of machine learning methods on predicting NSCLC overall survival time based on radiomics analysis.” Radiation Oncology 13(1): 1–8.
  • Tan, A. C., and D. Gilbert. 2003. “Ensemble machine learning on gene expression data for cancer classification. Proceedings of New Zealand Bioinformatics Conference, Te Papa, Wellington, New Zealand, 13-14 February 2003. University of Glasgow.” 21–10, London.
  • Tolkach, Y., T. Dohmgörgen, M. Toma, and G. Kristiansen. 2020. High-accuracy prostate cancer pathology using deep learning. Nature Machine Intelligence 2 (7):411–18. doi:10.1038/s42256-020-0200-7.
  • Torre, L. A., B. Trabert, C. E. Desantis, K. D. Miller, G. Samimi, C. D. Runowicz, M. M. Gaudet, and A. Jemal. 2018. “Ovarian cancer statistics, 2018.” CA: A Cancer Journal for Clinicians 284–96. doi:10.3322/caac.21456.
  • Tumors, S. 2008. “Non–small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship.” 83 (May):584–94. doi:10.4065/83.5.584.
  • Verma, S., V. Sharma, A. Nagpal, G. R. B. Amrita Bhat, R. Shah, R. Kumar . 2019. DNA base excision repair genes variants rs25487 (X-ray repair cross-complementing 1) and rs1052133 (human 8-oxoguanine glycosylase 1) with susceptibility to ovarian cancer in the population of the Jammu region, India. Journal of Cancer Research and Therapeutics 15 (6):1270.
  • Vladimir, S., T. Wang, C. Tong, A. Liaw, R. P. Sheridan, and Q. Song. 2005. Boosting: An Ensemble Learning Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Modeling 45 (3):786–99. doi:10.1021/ci0500379.
  • WALs, J. E., and G. R. A. C. E. J. Kelleher. 1971. lnstitute of Mathematical statistics is collaborating with JSTOR to digitize, preserve, and extend access the annals of mathematical statistics. sil. The Annals of Mathematical Statistics 42 (3):1142–53.
  • Wang, L., Y. Wang, and Q. Chang. 2016. Feature selection methods for big data bioinformatics : A survey from the search perspective. Methods (August). doi:10.1016/j.ymeth.2016.08.014.
  • Wei, K., T. Li, F. Huang, J. Chen, and Z. He. 2022. Cancer classification with data augmentation based on generative adversarial networks Frontiers of. Computer Science 16 (2):162601.
  • Wolpert, D. H. 1992. “Stacked Generalization.” Neural Networks 5:241–59.
  • Wu, W. E. N., and H. A. O. Zhou. 2017. “Data-driven diagnosis of cervical cancer with support vector machine-based approaches.” IEEE Access 5:25189–95.
  • Xiao, Y., W. Jun, Z. Lin, and X. Zhao. 2018. A deep learning-based multi-model ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine 153:1–9. doi:10.1016/j.cmpb.2017.09.005.
  • Yoav, F., and R. E. Schapire. 1996. “Experiments with a new boosting algorithm.” Proceedings of the 13th International Conference on Machine Learning, 148–56. 10.1.1.133.1040.
  • Yoo, S., I. Gujrathi, M. A. Haider, and F. Khalvati. 2019. Prostate cancer detection using deep convolutional neural networks. Scientific Reports 1–10. doi:10.1038/s41598-019-55972-4.
  • Zahras, D. 2018. “Cervical cancer risk classification based on deep convolutional neural network.” 2018 International Conference on Applied Information Technology and Innovation (ICAITI), Padang, Indonesia, 149–53.
  • Zhang, Y., Y. Zall, R. Nissim, and Z. R. Satyam. 2022. “Evaluation of a new dataset for visual detection of cervical precancerous lesions expert systems with applications.” Expert Systems with Applications 190:116048.