3,057
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Prediction in Traffic Accident Duration Based on Heterogeneous Ensemble Learning

&
Article: 2018643 | Received 30 Sep 2021, Accepted 09 Dec 2021, Published online: 08 Jan 2022

References

  • Al-Deek, H., and E. B. Emam. 2006. New methodology for estimating reliability in transportation networks with degraded link capacities. Journal of Intelligent Transportation Systems 10 (3):117–1541.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, et al. 2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–57.
  • Chen, T. Q., and C. Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 785–94.
  • Cong, H., C. Chen, P. S. Lin, et al. 2018. Traffic incident duration estimation based on a dual-learning Bayesian network model. Transportation Research Record 2672 (45):196–209.
  • Cover, T., and P. Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13 (1):21–27.
  • Demiroluk, S., and K. Ozbay. 2014. Adaptive learning in Bayesian networks for incident duration prediction. Transportation Research Record 2460 (1):77–85.
  • Dimitriou, L., and E. I. Vlahogianni. 2015. Fuzzy modeling of freeway accident duration with rainfall and traffic flow interactions. Analytic Methods in Accident Research 5:59–71.
  • Dowling, R., A. Skabardonis, M. Carroll, et al. 2004. Methodology for measuring recurrent and nonrecurrent traffic congestion. Transportation Research Record 1867 (1):60–68.
  • Fleming, J. 2016. Adversarial validation, part one. http://fastml.com/adversarial-validation-part-one/ 2021. Accessed Jul 8, 2021.
  • Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 (5):1189–232.
  • Guyon, I., and A. Elisseeff. 2003. An introduction to variable and feature selection. Journal of Machine Learning Research 3 (3):1157–82.
  • Hamad, K., M. A. Khalil, and A. R. Alozi. 2020. Predicting freeway incident duration using machine learning. International Journal of Intelligent Transportation Systems Research 18 (2):367–80.
  • Hamad, K., R. Al-Ruzouq, W. Zeiada, et al. 2020. Predicting incident duration using random forests. Transportmetrica A: Transport Science 16 (3):1269–93.
  • Haule, H. J., T. Sando, R. Lentz, et al. 2019. Evaluating the impact and clearance duration of freeway incidents. International Journal of Transportation Science and Technology 8 (1):13–24.
  • Hojati, A. T., L. Ferreira, S. Washington, et al. 2013. Hazard based models for freeway traffic incident duration. Accident Analysis & Prevention 52 ():171–81.
  • Hojati, A. T., L. Ferreira, S. Washington, et al. 2014. Modelling total duration of traffic incidents including incident detection and recovery time. Accident Analysis & Prevention 71:296–305.
  • Jain, S. 2017. Covariate shift - unearthing hidden problems in real world data science. https://www.analyticsvidhya.com/blog/2017/07/covariate-shift-the-hidden-problem-of-real-world-data-science/. 2021. Accessed Jul 8, 2021.
  • Ke, G., Q. Meng, T. Finley, et al. 2017. LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30:3146–54.
  • Khattak, A. J., J. Liu, B. Wali, et al. 2016. Modeling traffic incident duration using quantile regression. Transportation Research Record: Journal of the Transportation Research Board 2554 (1):139–48.
  • Li, R., F. C. Pereira, and M. E. Ben-Akiva. 2015. Competing risks mixture model for traffic incident duration prediction. Accident Analysis & Prevention 75:192–201.
  • Li, T., A. K. Sahu, A. Talwalkar, et al. 2020. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine 37(3): 50–60. .
  • Lin, Y., and R. Li. 2020. Real-time traffic accidents post-impact prediction: Based on crowdsourcing data. Accident Analysis & Prevention 145:105696.
  • Lundberg, S. M., G. Erion, H. Chen, et al. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence 2 (1):56–67.
  • Lundberg, S. M., and S. I. Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing systems, Long Beach, California, USA, 4768–77.
  • Ma, X., C. Ding, S. Luan, et al. 2017. Prioritizing influential factors for freeway incident clearance time prediction using the gradient boosting decision trees method. IEEE Transactions on Intelligent Transportation Systems 18 (9):2303–10.
  • Mfinanga, D., and E. Fungo. 2013. Impact of incidents on traffic congestion in Dar es Salaam city. International Journal of Transportation Science and Technology 2 (2):95–108.
  • Micci-Barreca, D. 2001. A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems. ACM SIGKDD Explorations Newsletter 3 (1):27–32.
  • Moosavi, S., M. H. Samavatian, S. Parthasarathy, et al. A countrywide traffic accident dataset. arXiv preprint arXiv:2019a, preprint arXiv.
  • Moosavi, S., M. H. Samavatian, S. Parthasarathy, et al. 2019b. Accident risk prediction based on heterogeneous sparse data new dataset and insights. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, Illinois, USA, 2019b33–42.
  • Moreno-Torres, J. G, T. Raeder, R. Alaiz-Rodríguez, et al. 2012. A unifying view on dataset shift in classification. Pattern Recognition 45 (1):521–30.
  • Nam, D., and F. Mannering. 2000. An exploratory hazard-based analysis of highway incident duration. Transportation Research Part A: Policy and Practice 34 (2):85–102.
  • Ozbay, K., and N. Noyan. 2006. Estimation of incident clearance times using Bayesian networks approach. Accident Analysis & Prevention 38 (3):542–55.
  • Prokhorenkova, L., G. Gusev, A. Vorobev, et al. 2017. CatBoost: Unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516.
  • Raschka, S. 2015. Python machine learning. Birmingham, UK: Packt publishing ltd.
  • Snoek, J., H. Larochelle, and R. P. Adams. 2012. Practical Bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25:2960–68.
  • Stekhoven, D. J., and P. Bühlmann. 2012. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28 (1):112–18.
  • Tang, J., L. Zheng, C. Han, et al. 2020. Traffic incident clearance time prediction and influencing factor analysis using extreme gradient boosting model. Journal of Advanced Transportation 2020 (1):1–12.
  • Valenti, G., M. Lelli, and D. Cucina. 2010. A comparative study of models for the incident duration prediction. European Transport Research Review 2 (2):103–11.
  • Wang, X., S. Chen, and W. Zheng. 2013. Traffic incident duration prediction based on partial least squares regression. Procedia - Social and Behavioral Sciences 96:425–32.
  • Williamson, A., and R. Friswell. 2011. Investigating the relative effects of sleep deprivation and time of day on fatigue and performance. Accident Analysis & Prevention 43 (3):690–97.
  • Wolpert, D. H. 1992. Stacked generalization. Neural Networks 5 (2):241–59.
  • Yang, Q., Y. Liu, T. Chen, et al. 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST) 10 (2):1–19.
  • Zheng, A., and A. Casari. 2018. Feature engineering for machine learning: Principles and techniques for data scientists. Sebastopol, California, USA: O'Reilly Media, Inc.
  • Zou, H., and T. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2):301–20.