1,502
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Artificial Intelligence Aided Agricultural Sensors for Plant Frostbite Protection

Article: 2031814 | Received 13 Sep 2021, Accepted 18 Jan 2022, Published online: 24 Jan 2022

References

  • Araghi, A., M. Mousavi‐Baygi, J. Adamowski, C. Martinez, and M. van der Ploeg. 2017. Forecasting soil temperature based on surface air temperature using a wavelet artificial neural network. Meteorological Applications 24 (4):603–611‏. doi:10.1002/met.1661.
  • Ardabili, S., A. Mosavi, A. Mahmoudi, T. M. Gundoshmian, S. Nosratabadi, and A. R. Várkonyi-Kóczy (2019, September). Modelling temperature variation of mushroom growing hall using artificial neural networks. In International Conference on Global Research and Education (pp. 33–1719). Springer, Cham.‏ 10.1007/978-3-030-36841-8_3
  • Atkinson, B. W. 2003. The climate near the ground, R. Geiger, RH Aron and P. Todhunter, xviii+ 584. Lanham, MD, USA: Rowman and Littlefield Publishers. doi:10.1002/joc.967.
  • Barlow, K. M., B. P. Christy, G. J. O’leary, P. A. Riffkin, and J. G. Nuttall. 2015. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research 171:109–19.
  • Cadenas, J. M., M. C. Garrido, R. Martínez-España, and M. A. Guillén-Navarro. 2020. Making decisions for frost prediction in agricultural crops in a soft computing framework. Computers and Electronics in Agriculture 175:105587‏. doi:10.1016/j.compag.2020.105587.
  • Chatterjee, S., N. Dey, and S. Sen. 2018. Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications. Sustainable Computing: Informatics and Systems. doi:10.1016/j.suscom.2018.09.002.
  • Ding, L., K. Noborio, and K. Shibuya. 2019. Frost forecast using machine learning-from association to causality. Procedia Computer Science 159:1001–10. doi:10.1016/j.procs.2019.09.267.
  • Fath, A. H., F. Madanifar, and M. Abbasi. 2020. Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum 6 (1):80–91. doi:10.1016/j.petlm.2018.12.002.
  • Feng, Y., N. Cui, W. Hao, L. Gao, and D. Gong. 2019. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 338:67–77. doi:10.1016/j.geoderma.2018.11.044.
  • Gobbett, D. L., U. Nidumolu, H. Jin, P. Hayman, and J. Gallant. 2021. Minimum temperature mapping augments Australian grain farmers’ knowledge of frost. Agricultural and Forest Meteorology 304-305:108422‏. doi:10.1016/j.agrformet.2021.108422.
  • Heidari, M., and H. Shamsi. 2019. Analog programmable neuron and case study on VLSI implementation of Multi-Layer Perceptron (MLP). Microelectronics Journal 84:36–47. doi:10.1016/j.mejo.2018.12.007.
  • Kang, S., S. Kim, S. Oh, and D. Lee. 2000. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology and Management 136 (1–3):173–184‏. doi:10.1016/S0378-1127(99)00290-X.
  • Keshavarzi, A., F. Sarmadian, E. S. E. Omran, and M. Iqbal. 2015. A neural network model for estimating soil phosphorus using terrain analysis. The Egyptian Journal of Remote Sensing and Space Science 18 (2):127–35. doi:10.1016/j.ejrs.2015.06.004.
  • Liakos, K. G., P. Busato, D. Moshou, S. Pearson, and D. Bochtis. 2018. Machine learning in agriculture: A review. Sensors 18 (8):2674. doi:10.3390/s18082674.
  • Liu, Y., J. C. Zhu, and Y. Cao. 2017. Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network. Journal of Iron and Steel Research International 24 (12):1254–60. doi:10.1016/S1006-706X(18)30025-6.
  • Maren, A. J., C. T. Harston, and R. M. Pap. 2014. Handbook of neural computing applications. Elsevier Academic Press.
  • Messikh, N., S. Bousba, and N. Bougdah. 2017. The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane. Journal of Environmental Chemical Engineering 5 (4):3483–89. doi:10.1016/j.jece.2017.06.053.
  • Mohammadi, H., M. Moghbel, and F. Ranjbar. 2016. Prediction of soil frost penetration depth in northwest of Iran using air freezing indices. Theoretical and Applied Climatology 126 (3–4):533–41. doi:10.1007/s00704-015-1564-1.
  • Nilsen, E. T., and D. M. Orcutt. 1996. Physiology of plants under stress. Abiotic factors. Physiology of Plants under Stress. Abiotic Factors 72:4.
  • Nosratabadi, S., K. Szell, B. Beszedes, F. Imre, S. Ardabili, and A. Mosavi. (2020, October). Comparative analysis of ANN-ICA and ANN-GWO for crop yield prediction. In 2020 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 1–5). Ho Chi Minh City, Vietnam: IEEE. doi: 10.1109/RIVF48685.2020.9140786
  • Nosratabadi, S., S. Ardabili, Z. Lakner, C. Mako, and A. Mosavi. 2021. Prediction of food production using machine learning algorithms of multilayer perceptron and ANFIS. Agriculture 11 (5):408‏. doi:10.3390/agriculture11050408.
  • Ochsner, T. E., R. Horton, and T. Ren. 2001. A new perspective on soil thermal properties. Soil Science Society of America Journal 65 (6):1641–47. doi:10.2136/sssaj2001.1641.
  • Ozturk, M., O. Salman, and M. Koc. 2011. Artificial neural network model for estimating the soil temperature. Canadian Journal of Soil Science 91 (4):551–562‏. doi:10.4141/cjss10073.
  • Paul, K. I., P. J. Polglase, P. J. Smethurst, A. M. O’Connell, C. J. Carlyle, and P. K. Khanna. 2004. Soil temperature under forests: A simple model for predicting soil temperature under a range of forest types. Agricultural and Forest Meteorology 121 (3–4):167–182‏. doi:10.1016/j.agrformet.2003.08.030.
  • Qaderi, K., V. Jalali, S. Etminan, M. M. Shahr-babak, and M. Homaee. 2018. Estimating soil hydraulic conductivity using different data-driven models of ANN, GMDH and GMDH-HS. Paddy and Water Environment 16 (4):823–33. doi:10.1007/s10333-018-0672-9.
  • Steponkus, P. L., M. Uemura, and M. S. Webb. 1993. Redesigning crops for increased tolerance to freezing stress. In Interacting stresses on plants in a changing climate, ed. Colin R. Black and Michael B. Jackson, 697–714. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-78533-7_45.
  • Taheri, E., S. Tarighi, and P. Taheri. 2014. Identification and population estimation of epiphytic ice nucleation active bacteria isolated from stone fruit trees in Khorasan-Razavi Province. Journal of Plant Protection 29 (3):449–58. doi:10.22067/jpp.v29i3.44334.
  • Vahedi, A. A. 2017. Monitoring soil carbon pool in the Hyrcanian coastal plain forest of Iran: Artificial neural network application in comparison with developing traditional models. Catena 152:182–89. doi:10.1016/j.catena.2017.01.022.
  • Varol, T., A. Canakci, and S. Ozsahin. 2015. Modeling of the Prediction of densification behavior of powder metallurgy Al–Cu–Mg/B 4 C composites using artificial neural networks. Acta Metallurgica Sinica (English Letters) 28 (2):182–95. doi:10.1007/s40195-014-0184-6.
  • Were, K., D. T. Bui, Ø. B. Dick, and B. R. Singh. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52:394–403. doi:10.1016/j.ecolind.2014.12.028.
  • Wu, J., and D. L. Nofziger. 1999. Incorporating temperature effects on pesticide degradation into a management model. Journal of Environmental Quality 28 (1):92–100. doi:10.2134/jeq1999.00472425002800010010x.