9,682
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Hybrid Deep Learning-based Models for Crop Yield Prediction

, ORCID Icon &
Article: 2031822 | Received 16 Oct 2021, Accepted 18 Jan 2022, Published online: 22 Jan 2022

References

  • Apolo-Apolo, O. E., J. Martínez-Guanter, G. Egea, P. Raja, and M. Pérez-Ruiz. 2020a. Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy 115:126030. doi:10.1016/j.eja.2020.126030.
  • Apolo-Apolo, O. E., M. Pérez-Ruiz, J. Martínez-Guanter, and J. Valente. 2020b. A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Frontiers in Plant Science 11. doi:10.3389/fpls.2020.01086.
  • Ardabili, S., A. Mosavi, and A. R. Várkonyi-Kóczy. 2019. Advances in machine learning modeling reviewing hybrid and ensemble methods. In International Conference on Global Research and Education, 215–1950. Cham: Springer. September.
  • Bargoti, S., and J. P. Underwood. 2017. Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics 34 (6):1039–60. doi:10.1002/rob.21699.
  • Bellocchio, E., T. A. Ciarfuglia, G. Costante, and P. Valigi. 2019. Weakly supervised fruit counting for yield estimation using spatial consistency. IEEE Robotics and Automation Letters 4 (3):2348–55. doi:10.1109/LRA.2019.2903260.
  • Bengio, Y. 2009. Learning deep architectures for AI. Delft, The Netherlands: Now Publishers Inc.
  • Brownlee, J. 2018. XGBoost with Python. Victoria, Australia: Machine Learning Mastery Pty.
  • Buduma, N., and N. Locascio. 2017. Fundamentals of deep learning: Designing next-generation machine intelligence algorithms. Sebastapol, CA, USA: O’Reilly Media, Inc.
  • Cabrera, V. E., D. Solís, G. A. Baigorria, and D. Letson. 2009. Managing climate variability in agricultural analysis. In Ocean circulation and El Niño: New research, edited by John A. Long and David S. Wells 163–79. Hauppauge, NY: Nova Science Publishers, Inc.
  • Chlingaryan, A., S. Sukkarieh, and B. Whelan. 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture 151:61–69. doi:10.1016/j.compag.2018.05.012.
  • Coviello, L., M. Cristoforetti, G. Jurman, and C. Furlanello. 2020. GBCNet: In-field grape berries counting for yield estimation by dilated CNNs. Applied Sciences 10 (14):4870. doi:10.3390/app10144870.
  • Desa, U. (2016). Transforming our world: The 2030 agenda for sustainable development.
  • Elavarasan, D., and P. M. D. Vincent. 2020. Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–901. doi:10.1109/ACCESS.2020.2992480.
  • Filippi, P., E. J. Jones, N. S. Wimalathunge, P. D. S. N. Somarathna, L. E. Pozza, S. U. Ugbaje, and T. F. A. Bishop. 2019. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture 20 (5):1015–29. doi:10.1007/s11119-018-09628-4.
  • Gao, Y., S. Wang, K. Guan, A. Wolanin, L. You, W. Ju, and Y. Zhang. 2020. The ability of sun-induced chlorophyll fluorescence from OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA. Remote Sensing 12 (7):7. doi:10.3390/rs12071111.
  • Hani, N., P. Roy, and V. Isler. 2020. A comparative study of fruit detection and counting methods for yield mapping in apple orchards. Journal of Field Robotics 37 (2):263–82. doi:10.1002/rob.21902.
  • Herrero-Huerta, M., P. Rodriguez-Gonzalvez, and K. M. Rainey. 2020. Yield prediction by machine learning from UAS-based multi-sensor data fusion in soybean. Plant Methods 16 (1):1–16. doi:10.1186/s13007-020-00620-6.
  • Kang, Y., M. Ozdogan, X. Zhu, Z. Ye, C. Hain, and M. Anderson. 2020. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environmental Research Letters 15 (6):064005. doi:10.1088/1748-9326/ab7df9.
  • Khaki, S., and L. Wang. 2019. Crop yield prediction using deep neural networks. Frontiers in Plant Science 10. doi:10.3389/fpls.2019.00621.
  • Khaki, S., L. Wang, and S. V. Archontoulis. 2020. A CNN-RNN framework for crop yield prediction. Frontiers in Plant Science 11: 1750.
  • Kim, N., K.-J. Ha, N.-W. Park, J. Cho, S. Hong, and Y.-W. Lee. 2019. A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern United States, 2006–2015. ISPRS International Journal of Geo-Information 8 (5):240. doi:10.3390/ijgi8050240.
  • Lal, R. 2016. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food and Energy Security 5 (4):239–51. doi:10.1002/fes3.99.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi:10.1038/nature14539.
  • Lin, T., R. Zhong, Y. Wang, J. Xu, H. Jiang, J. Xu, Y. Ying, L. Rodriguez, K. C. Ting, and H. Li. 2020. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environmental Research Letters 15 (3):034016. doi:10.1088/1748-9326/ab66cb.
  • Ma, J. W., C. H. Nguyen, K. Lee, and J. Heo. 2019. Regional-scale rice-yield estimation using stacked auto-encoder with climatic and MODIS data: A case study of South Korea. International Journal of Remote Sensing 40 (1):51–71. doi:10.1080/01431161.2018.1488291.
  • Maimaitijiang, M., V. Sagan, P. Sidike, S. Hartling, F. Esposito, and F. B. Fritschi. 2020. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment 237:111599. doi:10.1016/j.rse.2019.111599.
  • McGuire, S. 2015. FAO, IFAD, and WFP. In The state of food insecurity in the world 2015: Meeting the 2015 international hunger targets: Taking stock of uneven progress. Rome: FAO. Oxford University Press.
  • Meng, X., M. Liu, and Q. Wu. 2020. Prediction of rice yield via stacked LSTM. International Journal of Agricultural and Environmental Information Systems (IJAEIS) 11 (1):86–95. doi:10.4018/IJAEIS.2020010105.
  • Moghimi, A., C. Yang, and J. A. Anderson. 2020. Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat. Computers and Electronics in Agriculture 172:105299. doi:10.1016/j.compag.2020.105299.
  • Mosavi, A., S. Ardabili, and A. R. Varkonyi-Koczy. 2019. List of deep learning models. In International Conference on Global Research and Education, 202–14. Cham: Springer. September.
  • Quinto, B. (2020). Next-Generation Machine Learning with Spark. Berlin, Germany: Apress.
  • Saravi, B., A. P. Nejadhashemi, and B. Tang. 2020. Quantitative model of irrigation effect on maize yield by deep neural network. Neural Computing & Applications 32 (14):10679–92. doi:10.1007/s00521-019-04601-2.
  • Shahhosseini, M., R. A. Martinez-Feria, G. Hu, and S. V. Archontoulis. 2019. Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters 14 (12):124026. doi:10.1088/1748-9326/ab5268.
  • Sun, J., L. Di, Z. Sun, Y. Shen, and Z. Lai. 2019. County-level soybean yield prediction using deep CNN-LSTM model. Sensors (Switzerland) 19 (20):4363. doi:10.3390/s19204363.
  • Tedesco-Oliveira, D., P. Da Silva, R. W. Maldonado, and C. Zerbato. 2020. Convolutional neural networks in predicting cotton yield from images of commercial fields. Computers and Electronics in Agriculture 171:105307. doi:10.1016/j.compag.2020.105307.
  • van Klompenburg, T., A. Kassahun, and C. Catal. 2020. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177:105709. doi:10.1016/j.compag.2020.105709.
  • Wang, X., J. Huang, Q. Feng, and D. Yin. 2020a. Winter wheat yield prediction at county level and uncertainty analysis in main wheat-producing regions of China with deep learning approaches.Remote Sensing 12 (11): 1744.
  • Wang, Y., Z. Zhang, L. Feng, Q. Du, and T. Runge. 2020b. Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States. Remote Sensing 12 (8). doi: 10.3390/RS12081232.
  • Xu, X., P. Gao, X. Zhu, W. Guo, J. Ding, C. Li, M. Zhu, and X. Wu. 2019. Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecological Indicators 101:943–53. doi:10.1016/j.ecolind.2019.01.059.
  • You, J., X. Li, M. Low, D. Lobell, and S. Ermon (2017). Deep Gaussian process for crop yield prediction based on remote sensing data. In Paper presented at the Thirty-First AAAI conference on artificial intelligence, San Francisco, California, USA.
  • Zhang, D. 2006. Advances in machine learning applications in software engineering. Hershey, PA, USA: Igi Global.
  • Zhou, C. Q., J. Hu, Z. F. Xu, J. B. Yue, H. B. Ye, and G. J. Yang. 2020. A monitoring system for the segmentation and grading of broccoli head based on deep learning and neural networks. Frontiers in Plant Science 11:13. doi:10.3389/fpls.2020.00402.