2,607
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Intelligent System Utilizing HOG and CNN for Thermal Image-Based Detection of Wild Animals in Nocturnal Periods for Vehicle Safety

, , , &
Article: 2031825 | Received 25 Oct 2021, Accepted 18 Jan 2022, Published online: 08 Feb 2022

References

  • Affonso, C., A. L. D. Rossi, F. H. A. Vieira, and A. C. P. D. L. F. de Carvalho. 2017. Deep learning for biological image classification. Expert Systems with Applications 85:114–2006. doi:10.1016/j.eswa.2017.05.039.
  • Aslan, M. F., A. Durdu, K. Sabanci, and M. A. Mutluer. 2020. CNN and HOG based comparison study for complete occlusion handling in human tracking. Measurement: Journal of the International Measurement Confederation 158. doi:10.1016/j.measurement.2020.107704.
  • Bai, S. 2017. Growing random forest on deep convolutional neural networks for scene categorization. Expert Systems with Applications 71:279–87. doi:10.1016/j.eswa.2016.10.038.
  • Benten, A., T. Hothorn, T. Vor, and C. Ammer. 2018. Wildlife warning reflectors do not mitigate wildlife–vehicle collisions on roads. Accident Analysis and Prevention 120:64–73. doi:10.1016/j.aap.2018.08.003.
  • Christiansen, P., K. A. Steen, R. N. Jørgensen, and H. Karstoft. 2014. Automated detection and recognition of wildlife using thermal cameras. Sensors (Switzerland) 14 (8):13778–93. doi:10.3390/s140813778.
  • Dalal, N., and B. Triggs (2005). Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 886–93 vol. 1. DOI:10.1109/CVPR.2005.177
  • Emine, Cengil, and Cınars Ahmet. 2017. Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches. International Journal of Advance Research 3: 244–55. www.IJARIIT.com
  • Ferreira, A., and G. Giraldi. 2017. Convolutional neural network approaches to granite tiles classification. Expert Systems with Applications 84:1–11. doi:10.1016/j.eswa.2017.04.053.
  • Gade, R., and T. B. Moeslund. 2014. Thermal cameras and applications: A survey. Machine Vision and Applications 25 (1):245–62. doi:10.1007/s00138-013-0570-5.
  • Gomez Villa, A., A. Salazar, and F. Vargas. 2017. Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecological Informatics 41 (July):24–32. doi:10.1016/j.ecoinf.2017.07.004.
  • Guo, L., P. S. Ge, M. H. Zhang, L. H. Li, and Y. B. Zhao. 2012. Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Systems with Applications 39 (4):4274–86. doi:10.1016/j.eswa.2011.09.106.
  • Islam, K. T., R. G. Raj, and A. Al-Murad (2018). Performance of SVM, CNN, and ANN with BoW, HOG, and image pixels in face recognition. 2nd International Conference on Electrical and Electronic Engineering, ICEEE 2017, 1–4, RUET, Rajshahi, Bangladesh. DOI:10.1109/CEEE.2017.8412925
  • Kwasniewska, A., J. Ruminski, M. Szankin, and M. Kaczmarek. 2020. Super-resolved thermal imagery for high-accuracy facial areas detection and analysis. Engineering Applications of Artificial Intelligence 87:103263. doi:10.1016/j.engappai.2019.103263.
  • Liu, S., and W. Deng, “Very deep convolutional neural network based image classification using small training sample size,” 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015, pp. 730–34, DOI: 10.1109/ACPR.2015.7486599.
  • Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60 (2):91–110. doi:10.1023/B:VISI.0000029664.99615.94.
  • Mallick, S., and C. V. Learn Open, 2016, Accessed 2020. https://www.learnopencv.com/histogram-of-oriented-gradients/
  • Massaro, A., A. Panarese, and A. Galiano, “Infrared thermography applied on fresh food monitoring in automated alerting systems,” 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 2020, pp. 554–58, doi: 10.1109/MetroInd4.0IoT48571.2020.9138207.
  • Massaro, A., A. Panarese, and A. Galiano, “Technological platform for hydrogeological risk computation and water leakage detection based on a convolutional neural network,” 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), 2021, pp. 225–30, doi: 10.1109/MetroInd4.0IoT51437.2021.9488561.
  • Munian, Y., A. Martinez-Molina, and M. Alamaniotis (2020, July). “Intelligent system for detection of wild animals using HOG and CNN in automobile applications,” 11th International Conference on Information, Systems and Applications (IISA), Piraeus, Greece, pp. 8.
  • Peeters, J., E. Louarroudi, B. Bogaerts, S. Sels, J. J. J. Dirckx, and G. Steenackers. 2018. Active thermography setup updating for NDE: A comparative study of regression techniques and optimisation routines with high contrast parameter influences for thermal problems. Optimization and Engineering 19 (1):163–85. doi:10.1007/s11081-017-9368-z.
  • Pons, P., J. Jaen, and A. Catala. 2017. Assessing machine learning classifiers for the detection of animals’ behavior using depth-based tracking. Expert Systems with Applications 86:235–46. doi:10.1016/j.eswa.2017.05.063.
  • Riaz, I., K. Jingchun Piao, and H. Shin. 2013. Human detection by using centrist features for thermal images. IADIS International Journal on Computer Science and Information Systems 8 (2):1–11.
  • San Antonio News, Accessed 2020, https://www.mysanantonio.com/news/local/article/Here-s-where-people-most-often-crash-into-animals-13266975.php#item-85307-tbla-1
  • Santhi, V. 2017. Recent advances in applied thermal imaging for industrial applications. 1st. Hershey:IGI Global. (Chapter 1 and 4) doi:10.4018/978-1-5225-2423-6.
  • Sawyer, H., P. A. Rodgers, and T. Hart. 2016. Pronghorn and mule deer use of underpasses and overpasses along U.S. Highway 191. Wildlife Society Bulletin 40 (2):211–16. doi:10.1002/wsb.650.
  • Sibanda, V., K. Mpofu, J. Trimble, and N. Zengeni. 2019. Design of an animal detection system for motor vehicle drivers. Procedia CIRP 84:755–60. doi:10.1016/j.procir.2019.04.175.
  • Su, X., W. Lin, X. Zheng, X. Han, H. Chu, and X. Zhang (2013). A new Local-Main-Gradient-Orientation HOG and contour differences based algorithm for object classification. Proceedings - IEEE International Symposium on Circuits and Systems, Beijing, 2892–95. DOI:10.1109/ISCAS.2013.6572483
  • U.S. Department of Transportation, Federal Highway Administration, Accessed 2020, https://www.fhwa.dot.gov/publications/research/safety/08034/exec.cfm
  • Wang, J., L. P. Tchapmi, A. P. Ravikumar, M. McGuire, C. S. Bell, D. Zimmerle, S. Savarese, and A. R. Brandt. 2020. Machine vision for natural gas methane emissions detection using an infrared camera. Applied Energy. 257:113998. . doi:10.1016/j.apenergy.2019.113998.
  • Wang, Y., D. Zhang, Y. Liu, B. Dai, and L. H. Lee. 2019 February 1. Enhancing transportation systems via deep learning: A survey. Transportation Research Part C: Emerging Technologies. 99:144–63. doi: 10.1016/j.trc.2018.12.004.
  • Wei, X., Z. Yang, Y. Liu, D. Wei, L. Jia, and Y. Li. 2019. Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study. Engineering Applications of Artificial Intelligence 80:66–81. doi:10.1016/j.engappai.2019.01.008.
  • Wilkins, D. C., K. M. Kockelman, and N. Jiang. 2019. Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways. Accident Analysis and Prevention 131:157–70. doi:10.1016/j.aap.2019.05.030.
  • Wu, X., D. Sahoo, and S. C. H. Hoi. 2020. Recent advances in deep learning for object detection. Neurocomputing 396 (d):39–64. doi:10.1016/j.neucom.2020.01.085.
  • Yang, K., X. Wang, and R. Yu. 2018. A Bayesian dynamic updating approach for urban expressway real-time crash risk evaluation. Transportation Research Part C: Emerging Technologies 96:192–207. doi:10.1016/j.trc.2018.09.020.
  • Zhao, Y., K. Hao, H. He, X. Tang, and B. Wei. 2020. A visual long-short-term memory based integrated CNN model for fabric defect image classification. Neurocomputing 380:259–70. doi:10.1016/j.neucom.2019.10.067.
  • Zhou, D., J. Wang, and S. Wang (2012). Countour Based HOG Deer Detection in Thermal Images for Traffic Safety. Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012 (vol.2, pp.969–74), Las Vegas, NV, United States.
  • Zhu, Q., S. Avidan, M.-C. Yeh, and K.-T. Cheng (2006). Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on (CVPR’06), vol.2, no., pp. 1491–98, New York, NY, USA, DOI:10.1109/CVPR.2006.119
  • Zilkha, M., and A. B. Spanier (2019). Real-time CNN-based object detection and classification for outdoor surveillance images: Daytime and thermal. 1116902(September 2019), 1. Proceedings volume 11169, Artificial intelligence and machine learning in defense applications, Strasbourg, France. DOI:10.1117/12.2532908