1,227
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using Skeleton Correction to Improve Flash Lidar-based Gait Recognition

, , , , , & show all
Article: 2043525 | Received 11 Jun 2021, Accepted 14 Feb 2022, Published online: 14 Mar 2022

References

  • Ahmed, F., P. Polash Paul, and M. L. Gavrilova. 2015. DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. The Visual Computer 31 (6–8):915–2514. doi:10.1007/s00371-015-1092-0.
  • Ancong, W., W.-S. Zheng, and J.-H. Lai. 2017. Robust depth-based person re-identification. IEEE Transactions on Image Processing 26 (6):2588–603. doi:10.1109/TIP.2017.2675201.
  • Araujo, R. M., G. Graña, and V. Andersson. 2013. “Towards skeleton biometric identification using the microsoft Kinect sensor.” In Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 21–26. ACM.
  • Babaee, M., L. Linwei, and G. Rigoll. 2018. “Gait recognition from incomplete gait cycle.” In 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 768–72. IEEE.
  • Balazia, M., and K. N. Plataniotis. 2017. Human gait recognition from motion capture data in signature poses. IET Biometrics 6 (2):129–37. doi:10.1049/iet-bmt.2015.0072.
  • Ball, A., D. Rye, F. Ramos, and M. Velonaki. 2012. “Unsupervised clustering of people from ‘skeleton’data.” In 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boston Massachusetts USA, 225–26. IEEE.
  • Batabyal, T., A. Vaccari, and S. T. Acton. 2015. “Ugrasp: A unified framework for activity recognition and person identification using graph signal processing.” In Image Processing (ICIP), 2015 IEEE International Conference, Quebec city, Canada, 3270–74. IEEE.
  • Benedek, C., B. Gálai, B. Nagy, and Z. Jankó. 2018. “Lidar-based gait analysis and activity recognition in a 4d surveillance system.” IEEE Transactions on Circuits and Systems for Video Technology 28 (1):101–13.
  • Cao, Z., T. Simon, S.-E. Wei, and Y. Sheikh. 2017. “Realtime multi-person 2d pose estimation using part affinity fields.“ In Proceedings of the IEEE conference on computer vision and pattern recognition, 7291–7299.
  • Charalambous, C. P. 2014. Walking patterns of normal men. In Classic papers in orthopaedics, 393–95. London: Springer.
  • Chattopadhyay, P., S. Sural, and J. Mukherjee. 2014. Frontal gait recognition from incomplete sequences using RGB-D camera.” IEEE Transactions on Information Forensics and Security. 9 (11):1843–56.
  • Chi, W., J. Wang, and M. Q-H Meng. 2018. A gait recognition method for human following in service robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (9):1429–40. doi:10.1109/TSMC.2017.2660547.
  • Choi, S., J. Kim, W. Kim, and C. Kim. 2019. Skeleton-based gait recognition via robust frame-level matching. IEEE Transactions on Information Forensics and Security 14 (10):2577–92. doi:10.1109/TIFS.2019.2901823.
  • Clark, R. A., K. J. Bower, B. F. Mentiplay, K. Paterson, and Y.-H. Pua. 2013. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. Journal of Biomechanics 46 (15):2722–25. doi:10.1016/j.jbiomech.2013.08.011.
  • Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74 (368):829–36. doi:10.1080/01621459.1979.10481038.
  • Daugman, J. 2009. How iris recognition works. In The essential guide to image processing, 715–39. Amsterdam, Netherlands: Elsevier.
  • Dikovski, B., G. Madjarov, and D. Gjorgjevikj. 2014. “Evaluation of different feature sets for gait recognition using skeletal data from Kinect.” In 2014 37th International Convention on Information and Communication Technology Electronics and Microelectronics (MIPRO), Opatija, Croatia, 1304–08. IEEE.
  • Din, D., A. G. Silvia, and L. Rochester. 2016. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use. IEEE Journal of Biomedical and Health Informatics 20 (3):838–47. doi:10.1109/JBHI.2015.2419317.
  • Fankhauser, P., M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and R. Y. Siegwart. 2015. “Kinect v2 for mobile robot navigation: Evaluation and modeling.” In 2015 International Conference on Advanced Robotics (ICAR), Kadir Has University Cibali Confrence Center, Istanbul, Turkey, 388–94. IEEE.
  • Gálai, B., and C. Benedek. 2015. “Feature selection for lidar-based gait recognition.” In Computational Intelligence for Multimedia Understanding (IWCIM), 2015 International Workshop, Prague, Czech Republic, 1–5. IEEE.
  • Han, S. 2015. The influence of walking speed on gait patterns during upslope walking.” Journal of Medical Imaging and Health Informatics 5 (1):89–92.
  • Han, J., and B. Bhanu. 2005. Individual recognition using gait energy image.” IEEE transactions on pattern analysis and machine intelligence 28 (2):316–22.
  • Haque, A., A. Alahi, and L. Fei-Fei. 2016. “Recurrent attention models for depth-based person identification.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LAS VEGAS, Nevada, 1229–38.
  • Horaud, R., M. Hansard, G. Evangelidis, and C. Ménier. 2016. An overview of depth cameras and range scanners based on time-of-flight technologies. Machine Vision and Applications 27 (7):1005–20. doi:10.1007/s00138-016-0784-4.
  • Iwashita, Y., K. Uchino, and R. Kurazume. 2013. Gait-based person identification robust to changes in appearance. Sensors 13 (6):7884–901. doi:10.3390/s130607884.
  • Jain, A. K., R. Bolle, and S. Pankanti. 2006. Biometrics: Personal identification in networked society, vol. 479. Berlin/Heidelberg, Germany: Springer Science & Business Media.
  • Jang, C. H., C. S. Kim, K. C. Jo, and M. Sunwoo. 2017. Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications. International Journal of Automotive Technology 18 (1):147–56. doi:10.1007/s12239-017-0015-7.
  • Kim, S.-Y., M. Kim, and H. Yo-Sung. 2013. Depth image filter for mixed and noisy pixel removal in RGB-D camera systems. IEEE Transactions on Consumer Electronics 59 (3):681–89. doi:10.1109/TCE.2013.6626256.
  • Koide, K., and J. Miura. 2016. Identification of a specific person using color, height, and gait features for a person following robot. Robotics and Autonomous Systems 84 (84):76–87. doi:10.1016/j.robot.2016.07.004.
  • Kovač, J., and P. Peer. 2014. Human skeleton model based dynamic features for walking speed invariant gait recognition. Mathematical Problems in Engineering 2014.
  • Krzeszowski, T., A. Switonski, B. Kwolek, H. Josinski, and K. Wojciechowski. 2014. “DTW-based gait recognition from recovered 3-D joint angles and inter-ankle distance.” In International Conference on Computer Vision and Graphics, Warsaw, Poland, 356–63. Springer.
  • Kumar, M. S., and R. Venkatesh Babu. 2012. “Human gait recognition using depth camera: A covariance based approach.” In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, Mumbai, India, 20. ACM.
  • Liao, R., Y. Shiqi, A. Weizhi, and Y. Huang. 2020. A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognition 98:107069. doi:10.1016/j.patcog.2019.107069.
  • Liao, S., H. Yang, X. Zhu, and S. Z. Li. 2015. “Person re-identification by local maximal occurrence representation and metric learning.” In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, Massachusetts, 2197–206.
  • Maltoni, D., D. Maio, A. K. Jain, and S. Prabhakar. 2009. Handbook of fingerprint recognition. Berlin/Heidelberg, Germany: Springer Science & Business Media.
  • McCollough, E. 1893. Photographic topography. Industry: A Monthly Magazine Devoted to Science, Engineering and Mechanic Arts 54 (1):399–406.
  • Munaro, M., A. Basso, A. Fossati, L. Van Gool, and E. Menegatti. 2014a. “3D reconstruction of freely moving persons for re-identification with a depth sensor.” In 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 4512–19. IEEE.
  • Munaro, M., A. Fossati, A. Basso, E. Menegatti, and L. Van Gool. 2014b. One-shot person reidentification with a consumer depth camera. In Person re-identification, 161–81. London: Springer.
  • Nasrin, S., A. G. Tamal Batabyal, N. K. Dhar, B. O. Familoni, K. M. Iftekharuddin, and S. T. Acton. 2019. “Glidar3DJ: A view-invariant gait identification via flash lidar data correction.“ In 2019 IEEE International Conference on Image Processing, Taipei taiwan, 2606–2610, IEEE.
  • Oreifej, O., R. Mehran, and M. Shah. 2010. “Human identity recognition in aerial images.” In 2010 IEEE Computer Society Conference on Computer Vision and P attern R ecognition, San Francisco, CA, 709–16. IEEE.
  • Pala, P., L. Seidenari, S. Berretti, and A. Del Bimbo. 2019. Enhanced skeleton and face 3d data for person re-identification from depth cameras. Computers & Graphics 79:69–80. doi:10.1016/j.cag.2019.01.003.
  • Preis, J., M. Kessel, M. Werner, and C. Linnhoff-Popien. 2012. “Gait recognition with kinect.” In 1st international workshop on kinect in pervasive computing, New Castle, UK, 1–4.
  • Rao, H., S. Wang, H. Xiping, M. Tan, Y. Guo, J. Cheng, X. Liu, and H. Bin. 2021. A self-supervised gait encoding approach with locality-awareness for 3d skeleton based person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 1–1. doi:10.1109/TPAMI.2021.3092833.
  • Sadeghzadehyazdi, N., T. Batabyal, and S. T. Acton. 2021. Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network. Expert Systems with Applications 185:115582. doi:10.1016/j.eswa.2021.115582.
  • Schroff, F., D. Kalenichenko, and J. Philbin. 2015. “Facenet: A unified embedding for face recognition and clustering.” In Proceedings of the IEEE conference on computer vision and patternrecognition, Boston, Massachusetts, 815–23.
  • Semwal, V. B., J. Singha, P. Kumari Sharma, A. Chauhan, and B. Behera. 2017. An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification. Multimedia Tools and Applications 76 (22):24457–75. doi:10.1007/s11042-016-4110-y.
  • Sinha, A., K. Chakravarty, and B. Bhowmick. 2013. Person identification using skeleton information from kinect.” In Proceedings. International. Conference on Advances in Computer-Human Interactions 101–08.
  • Smolik, M., V. Skala, and O. Nedved. 2016. “A comparative study of LOWESS and RBF approximations for visualization.” In International Conference on Computational Science and Its Applications, Beijing University of Posts and Telecommunications, Beijing, China, 405–19. Springer.
  • Tang, J., J. Luo, T. Tjahjadi, and F. Guo. 2016. Robust arbitrary-view gait recognition based on 3d partial similarity matching. IEEE Transactions on Image Processing 26 (1):7–22. doi:10.1109/TIP.2016.2612823.
  • Tukey, J. W. 1977. Exploratory data analysis, vol. 2. Reading, MA: Pearson.
  • Xuequan, L., H. Chen, S.-K. Yeung, Z. Deng, and W. Chen. 2018. “Unsupervised articulated skeleton extraction from point set sequences captured by a single depth camera.” In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton New Orleans Riverside, New Orleans, Louisiana, USA, vol. 32. 1.
  • Xuequan, L., Z. Deng, J. Luo, W. Chen, S.-K. Yeung, and H. Ying. 2019. 3D articulated skeleton extraction using a single consumer-grade depth camera. Computer Vision and Image Understanding 188:102792. doi:10.1016/j.cviu.2019.102792.
  • Yang, K., Y. Dou, L. Shaohe, F. Zhang, and Q. Lv. 2016. Relative distance features for gait recognition with Kinect. Journal of Visual Communication and Image R Epresentation 39:209–17. doi:10.1016/j.jvcir.2016.05.020.
  • Zhang, Y., and L. Shutao 2011. “Gabor-LBP based region covariance descriptor for person re-identification.” In 2011 Sixth International Conference on Image and Graphics, Hefei, P.R.China, 368–71. IEEE.
  • Zhao, L., L. Xuequan, M. Zhao, and M. Wang. 2021. “Classifying In-Place Gestures with End-to-End Point Cloud Learning.” In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, 229–38. IEEE.
  • Zheng, W., L. Lin, Z. Zhang, Y. Huang, and L. Wang. 2019. “Relational network for skeleton-based action recognition.” In 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 826–31. IEEE.