4,901
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Computer Vision Approach for Liver Tumor Classification Using CT Dataset

, & ORCID Icon
Article: 2055395 | Received 18 Dec 2021, Accepted 16 Mar 2022, Published online: 04 Apr 2022

References

  • Abdel-Basset, M., D. El-Shahat, I. El-henawy, V. H. C. de Albuquerque, and S. Mirjalili. 2020. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Systems with Applications 139:112824. doi:10.1016/j.eswa.2019.112824.
  • Alahmer, H., and Ahmed, A. 2016. Computer-aided classification of liver lesions from CT images based on multiple ROI. Procedia Computer Science 90:80–2650.
  • Alirr, O. I. 2020. Deep learning and level set approach for liver and tumor segmentation from CT scans. Journal of Applied Clinical Medical Physics 21 (10):200–09. doi:10.1002/acm2.13003.
  • Almotairi, S., G. Kareem, M. Aouf, B. Almutairi, and M. A. M. Salem. 2020. LLiver tumor segmentation in CT scans using modified SegNet. Sensors 20 (5):1516. doi:10.3390/s20051516.
  • n.d. American Cancer Society. Accessed May 15, 2020. https://www.cancer.org.
  • Anter, A. M., and A. E. Hassenian. 2019. CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm. Artificial Intelligence in Medicine 97:105–17. doi:10.1016/j.artmed.2018.11.007.
  • Arora, K., and A. K. Aggarwal. 2018. Approaches for image database retrieval based on color, texture, and shape features. In Advanced Concepts in real time image and video processing, ed. Ashwani Kumar Aggarwal Alka Srivastava, 28–50. Punjab, India: IGI Global.
  • Baâzaoui, A., W. Barhoumi, A. Ahmed, and E. Zagrouba. 2017. Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing. IRBM 38 (2):98–108. doi:10.1016/j.irbm.2017.02.003.
  • Balagourouchetty, L., J. K. Pragatheeswaran, B. Pottakkat, and R. Govindarajalou. 2018. Enhancement approach for liver lesion diagnosis using unenhanced CT images. IET Computer Vision 12 (8):1078–87. doi:10.1049/iet-cvi.2018.5265.
  • Bi, L., J. Kim, A. Kumar, and D. Feng. 2017. Automatic liver lesion detection using cascaded deep residual networks. arXiv preprint arXiv:1704.02703. https://doi.org/10.48550/arXiv.1704.02703
  • Boss, R. S. C., K. Thangavel, and D. A. P. Daniel 2012. Mammogram image segmentation using fuzzy clustering. International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012), 290–95. Salem, India, IEEE.
  • Bovik, A. C. 1991. Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Transactions on Signal Processing 39 (9):2025–43. doi:10.1109/78.134435.
  • Chang, C. C., H. H. Chen, Y. C. Chang, M. Y. Yang, C. M. Lo, W. C. Ko, R. F. Chang, K.-L. Liu, and R.-F. Chang. 2017. Computer-aided diagnosis of liver tumors on computed tomography images. Computer Methods and Programs in Biomedicine 145:45–51. doi:10.1016/j.cmpb.2017.04.008.
  • Choi, B. H., Y. J. Kim, S. J. Choi, and K. G. Kim. 2018. Malignant and Benign classification of liver tumor in CT according to data pre-processing and deep running model. Journal of Biomedical Engineering Research 39 (6):229–36.
  • Czipczer, V., and A. Manno-Kovacs 2019. Automatic liver segmentation on CT images combining region-based techniques and convolutional features. 2019 International Conference on Content-Based Multimedia Indexing (CBMI). 1–6, Dublin, Ireland, IEEE.
  • Dey, R., and Y. Hong. 2019. Hybrid cascaded neural network for liver Lesion segmentation. arXiv preprint arXiv:1909.04797. https://doi.org/10.48550/arXiv.1909.04797
  • Dwipayana, M., F. Arnia, and Z. Musliyana. 2018. Histogram equalization smoothing for determining threshold accuracy on ancient document image binarization. Journal of Physics Conference Series 1019:2–s2. doi:10.1088/1742-6596/1019/1/012071.
  • Ghoniem, R. M. 2020. A novel bio-inspired deep learning approach for liver cancer diagnosis. Information 11 (2):80. doi:10.3390/info11020080.
  • Gruber, N., S. Antholzer, W. Jaschke, C. Kremser, and M. Haltmeier. 2019. A joint deep learning approach for automated liver and tumor segmentation. arXiv preprint arXiv:1902.07971. https://doi.org/10.48550/arXiv.1902.07971
  • Hemalatha, V., and C. Sundar. 2021. Automatic liver cancer detection in abdominal liver images using soft optimization techniques. Journal of Ambient Intelligence and Humanized Computing 12 (5):4765–74. doi:10.1007/s12652-020-01885-4.
  • Hussain, K., S. Rahman, M. M. Rahman, S. M. Khaled, M. Abdullah-Al Wadud, M. A. H. Khan, and M. Shoyaib 2018. A histogram specification technique for dark image enhancement using a local transformation method. (IPSJ Transactions on Computer Vision an).
  • Iqbal, Z., M. A. Khan, M. Sharif, J. H. Shah, M. H. Ur Rehman, and K. Javed. 2018. An automated detection and classification of citrus plant diseases using image processing techniques: A review. Computers and Electronics in Agriculture 153:12–32. doi:10.1016/j.compag.2018.07.032.
  • Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. 2011. Global cancer statistics. CA: A Cancer Journal for Clinicians 61(2):69–90.
  • Jinglu, H., and J. Zhang. 2008. Image segmentation based on 2d otsu method with histogram analysis. International Conference, 6, Wuhan, China.
  • Kanan, C., G. W. Cottrell, and E. Ben-Jacob. 2012. Color-to-grayscale: Does the method matter in image recognition? PloS one 7 (1):e29740. doi:10.1371/journal.pone.0029740.
  • Kaur, A., A. P. S. Chauhan, and A. K. Aggarwal. 2021. An automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional network. Expert Systems with Applications 186:115686. doi:10.1016/j.eswa.2021.115686.
  • Kavur, A. E., L. I. Kuncheva, and M. A. Selver. 2020. Basic ensembles of vanilla-style deep learning models improve liver segmentation from CT images. arXiv preprint arXiv \2001.09647. https://doi.org/10.48550/arXiv.2001.09647
  • Kondo, S., K. Takagi, M. Nishida, T. Iwai, Y. Kudo, K. Ogawa, T. Kamiyama, H. Shibuya, K. Kahata, and C. Shimizu. 2017. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles. IEEE Transactions on Medical Imaging 36(7):1427-1437. https://doi.org/10.1109/tmi.2017.2659734
  • Kondo, S., K. Takagi, M. Nishida, T. Iwai, Y. Kudo, K. Ogawa, C. Shimizu, H. Shibuya, K. Kahata, and C. Shimizu. 2017b. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles. IEEE Transactions on Medical Imaging 36 (7):1427–37. doi:10.1109/TMI.2017.2659734.
  • Krishan, A., and D. Mittal. 2021. Ensembled liver cancer detection and classification using CT images. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 235 (2):232–44. doi:10.1177/0954411920971888.
  • Kumar, S. S., and R. S. Moni. 2010. Diagnosis of liver tumor from CT images using curvelet transform. International Journal on Computer Science and Engineering 2 (4):1173–78.
  • Li, C., and A. Zhu. 2020. Application of image fusion in diagnosis and treatment of liver cancer. Applied Sciences 10 (3):1171. doi:10.3390/app10031171.
  • Liu, Y. C., D. S. Tan, J. C. Chen, W. H. Cheng, and K. L. Hua 2019. Segmenting hepatic lesions using residual attention U-Net with an adaptive weighted dice loss. 2019 IEEE International Conference on Image Processing (ICIP), 3322–33, Taipei, Taiwan.
  • Macêdo, S., G. Melo, and J. Kelner. 2015. A comparative study of grayscale conversion techniques applied to SIFT descriptors. SBC Journal on Interactive Systems 6 (2):30–36.
  • Meng, L., Y. Tian, and S. Bu. 2020. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Journal of Applied Clinical Medical Physics 21 (1):144–57. doi:10.1002/acm2.12784.
  • Naeem, S., A. Ali, S. Qadri, W. K. Mashwani, N. Tairan, H. Shah, S. Anam, F. Jamal, C. Chesneau, and S. Anam. 2020. Machine-Learning based hybrid-feature analysis for liver cancer classification using fused (MR and CT) images. Applied Sciences 10 (9):3134. doi:10.3390/app10093134.
  • Naeemah, M. R. 2019. Textural analysis of liver tumor using watershed segmentation based on statistical and geometrical features. Iraqi Journal of Science 1877-1887. https://doi.org/10.24996/ijs.2019.60.8.25
  • Nasiri, N., A. H. Foruzan, and Y. W. Chen 2019. A controlled generative model for segmentation of liver tumors. Iranian Conference on Electrical Engineering (ICEE), 1742–45, Yazd, Iran, IEEE.
  • Ntomi, V., A. Paspala, and D. Schizas. 2018. Novel techniques in the surgical management of hepatocellular carcinoma. In (Ed.), Liver Cancer. IntechOpen. https://doi.org/10.5772/intechopen.79982
  • Özyurt, F., T. Tuncer, E. Avci, M. Koç, and İ. Serhatlioğlu. 2019. A novel liver image classification method using perceptual hash-based convolutional neural network. Arabian Journal for Science and Engineering 44 (4):3173–82. doi:10.1007/s13369-018-3454-1.
  • Pal, M. 2005. Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26 (1):217–22. doi:10.1080/01431160412331269698.
  • Pang, S., A. Du, M. A. Orgun, Z. Yu, Y. Wang, Y. Wang, and G. Liu. 2020. CTumorGAN: A unified framework for automatic computed tomography tumor segmentation. European Journal of Nuclear Medicine and Molecular Imaging 47(10):2248-2268. doi: 10.1007/s00259-020-04781-3. Epub 2020 Mar 28. PMID: 32222809.
  • Pang, Y., D. Hu, and M. Sun 2019. A modified scheme for liver tumor segmentation based on cascaded FCNs. In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC '19). Association for Computing Machinery, New York, NY, USA, Article 10, 1–6. https://doi.org/10.1145/3371425.3371451.
  • Parsai, A., M. E. Miquel, H. Jan, A. Kastler, T. Szyszko, and I. Zerizer. 2019. Improving liver lesion characterisation using retrospective fusion of FDG PET/CT and MRI. Clinical Imaging 55:23–28. doi:10.1016/j.clinimag.2019.01.018.
  • Pérez-Benito, C., S. Morillas, C. Jordán, and J. A. Conejero. 2017. Smoothing vs. sharpening of colour images: Together or separated. Applied Mathematics and Nonlinear Sciences 2 (1):299–316. doi:10.21042/AMNS.2017.1.00025.
  • Rajalakshmi, T., U. Snekhalatha, and J. Baby. 2019. Segmentation of liver tumor using fast greedy snake algorithm. Biomedical Engineering: Applications, Basis and Communications 31 (2):1950013.
  • Rela, M., S. Nagaraja Rao, and P. Ramana Reddy. 2021. Optimized segmentation and classification for liver tumor segmentation and classification using opposition‐based spotted hyena optimization. International Journal of Imaging Systems and Technology 31 (2):627–56. doi:10.1002/ima.22519.
  • Sarker, H. I., Y. B. Abushark, and A. I. Khan. 2020. ContextPCA: Predicting context-aware smartphone apps usage based on machine learning techniques. Symmetry 12 (4):499. doi:10.3390/sym12040499.
  • Schmauch, B., P. Herent, P. Jehanno, O. Dehaene, C. Saillard, C. Aubé, S. Jégou, N. Lassau, and S. Jégou. 2019. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagnostic and Interventional Imaging 100 (4):227–33. doi:10.1016/j.diii.2019.02.009.
  • Seo, H., C. Huang, M. Bassenne, R. Xiao, and L. Xing 2020. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE Transactions on Medical Imaging 39:1316-1325.
  • Shuang, Y., and Z. Wang. 2020. A novel approach for automatic and robust segmentation of the 3D liver in computed tomography images. Measurement Science and Technology 31 (11):115701. doi:10.1088/1361-6501/ab95db.
  • Siddiqi, A. A., A. Khawaja, and A. Hashmi. 2020. Classification of abdominal CT images bearing liver tumor using structural similarity index and support vector machine. Mehran University Research Journal Of Engineering & Technology 39 (4):751–58. doi:10.22581/muet1982.2004.07.
  • Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., and Jemal, A. 2020. Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70(3):145–164.
  • Srivastava, A., and A. K. Aggarwal. 2018. Medical image fusion in spatial and transform domain: A comparative analysis. In Handbook of research on advanced concepts in real-time image and video processing, ed. A., & Aggarwal, A. K. Srivastava, 281–300. Punjab, India: IGI Global.
  • Srivastava, A., V. Singhal, and A. K. Aggarawal. 2017. Comparative analysis of multimodal medical image fusion using PCA and wavelet transforms. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) VI.
  • Sun, C., A. Xu, D. Liu, Z. Xiong, F. Zhao, and W. Ding 2019. Deep Learning-Based Classification of Liver Cancer Histopathology Images Using Only Global Labels, In IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 6, pp. 1643-1651, June 2020, doi: 10.1109/JBHI.2019.2949837.
  • Taguchi, Y. H. 2020. “Applications of PCA based unsupervised FE to bioinformatics. Unsupervised Feature Extraction Applied to Bioinformatics. Springer.
  • Thukral, R., A. Kumar, and A. S. Arora 2019, September. Effect of Different Thresholding Techniques for Denoising of EMG Signals by using Different Wavelets, 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), pp. 161-165, doi: 10.1109/ICCT46177.2019.8969036.
  • Todoroki, Y., Y. Iwamoto, L. Lin, H. Hu, and Y. W. Chen 2019. Automatic detection of focal liver lesions in multi-phase CT images using a multi-channel & multi-scale CNN. 2019 41st Annual International Conference of the IEEE Engineering, Berlin, Germany.
  • Wang, Z., Zhang, C., Jiao, T., Gao, M., and Zou, G. 2018. Fully automatic segmentation and three-dimensional reconstruction of the liver in CT images. Journal of Healthcare Engineering, .
  • Wang, S., M. Zhou, O. Gevaert, Z. Tang, D. Dong, Z. Liu, and J. Tian 2017. A multi-view deep convolutional neural networks for lung nodule segmentation. Engineering in Medicine and Biology Society (EMBC), 39th Annual International Conference IEEE, Jeju, Korea (South).
  • Weldon, T. P., W. E. Higgins, and D. F. Dunn. 1996. Gabor filter design for multiple texture segmentation. OPTICAL ENGINEERING-BELLINGHAM-INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 35:2852–63. doi:10.1117/1.600971.
  • Wu, W., Z. Zhou, S. Wu, and Y. Zhang 2016. Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts. (Computational and mathematical methods in medicine, 2016).
  • Wu, W., Zhou, Z., Wu, S., and Zhang, Y. 2016 . Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts. Computational and Mathematical Methods in Medicine, .
  • Xia, K., H. Yin, P. Qian, Y. Jiang, and S. Wang. 2019. Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images. IEEE Access 7. doi: 10.1109/ACCESS.2019.2929270.
  • Xu, H., W. Guo, X. Cui, H. Zhuo, Y. Xiao, X. Ou, X. Ma, T. Zhang, and X. Ma. 2019. Three-dimensional texture analysis based on PET/CT images to distinguish hepatocellular carcinoma and hepatic lymphoma. Frontiers in Oncology 9:844. doi:10.3389/fonc.2019.00844.
  • Zheng, Z., X. Zhang, H. Xu, W. Liang, S. Zheng, and Y. Shi. 2018. A unified level set framework combining hybrid algorithms for liver and liver tumor segmentation in CT images. BioMed Research International 2018. Article ID 3815346. https://doi.org/10.1155/2018/3815346.
  • Zhou, L. Q., J. Y. Wang, S. Y. Yu, G. G. Wu, Q. Wei, Y. B. Deng, C. F. Dietrich, X.-W. Cui, and C. F. Dietrich. 2019. Artificial intelligence in medical imaging of the liver. World Journal of Gastroenterology 25 (6):672. doi:10.3748/wjg.v25.i6.672.