8,030
Views
1
CrossRef citations to date
0
Altmetric
Review

Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study

, ORCID Icon, , ORCID Icon &
Article: 2055399 | Received 23 Jan 2022, Accepted 16 Mar 2022, Published online: 25 Mar 2022

References

  • Alazab, M., S. Venkatraman, P. Watters, and M. Alazab. 2011. Zero-day malware detection based on supervised learning algorithms of API call signatures. Proceedings of the Ninth Australasian Data Mining Conference (AusDM’11), Ballarat, Australia, 1–2 December 2011, Conferences in Research and Practice in Information Technology, Volume 121, Australian Computer Society Inc./ACM pp. 171–2710
  • Amiri, F., M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani. 2011. Mutual information-based feature selection for intrusion detection systems. Journal of Network and Computer Applications 34 (4):1184–99. doi:10.1016/j.jnca.2011.01.002.
  • Banadaki, Y. M. 2020. Detecting malicious dns over https traffic in domain name system using machine learning classifiers. Journal of Computer Sciences and Applications 8 (2):46–55. doi:10.12691/jcsa-8-2-2.
  • Binks, A. 2019. The art of phishing: Past, present and future. Computer Fraud & Security 2019 (4):9–11. doi:10.1016/S1361-3723(19)30040-5.
  • Brown, A., A. Tuor, B. Hutchinson, and N. Nichols, . 2018. “Recurrent neural network attention mechanisms for interpretable system log anomaly detection. Proceedings of the First Workshop on Machine Learning for Computing Systems, USA, pp. 1–8 doi:10.1145/3217871.3217872.
  • Buczak, A. L., and E. Guven. 2015. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communucation Survey Tution 18 (2):1153–76. doi:10.1109/COMST.2015.2494502.
  • Chowdhury, M. U., F. Hammond, G. Konowicz, C. Xin, H. Wu, and J. Li. 2017.” A few-shot Deep Learning approach for ımproved ıntrusion detection.” Proccedings of the IEEE 8th annual ubiquitous computing, NY, USA, pp. 456–62 doi:10.1109/UEMCON.2017.8249084.
  • Costa, K. A. D., J. P. Papa, C. O. Lisboa, R. Munoz, and V. De Albuquerque. 2019. Internet of things: A survey on machine learning-based intrusion detection approaches. Computer Network 151:147–57. doi:10.1016/j.comnet.2019.01.023.
  • Creech, G., and J. Hu. 2013. A semantic approach to host-based intrusion detection systems using contiguousand discontiguous system call patterns. IEEE Transactions on Computers 63 (4):807–19. doi:10.1109/TC.2013.13.
  • Diro, A. A., and N. Chilamkurti. 2018. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems 82:761–68. doi:10.1016/j.future.2017.08.043.
  • Ferrag, M. A., L. Maglaras, S. Moschoyiannis, and H. Janicke. 2020. Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study. Journal of Information Security and Applications 50:102419. doi:10.1016/j.jisa.2019.102419.
  • Folino, G., and P. Sabatino. 2016. Ensemble based collaborative and distributed intrusion detection systems: A survey. Journal of Network Computer Application 66:1–16. doi:10.1016/j.jnca.2016.03.011.
  • Fontugne, R., P. Borgnat, P. Abry, and K. Fukuda. 2010. “Mawilab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking.” Proceedings of the 6th International Conference, pp . 1–12. USA. doi:10.1145/1921168.1921179.
  • Garcia, S., M. Grill, J. Stiborek, and A. Zunino. 2014. An empirical comparison of botnet detection methods. Computers & Security 45:100–23. doi:10.1016/j.cose.2014.05.011.
  • Guo, W., T. Wang, and J. Wei. 2018. “Malware detection with convolutional neural network using hardware events.” Proccedings of the CCF national conference on computer engineering and technology, pp. 104–15.
  • Haddadi, F., S. Khanchi, M. Shetabi, and V. Derhami. 2010. “Intrusion detection and attack classification using feed-forward neural network.” 2010 Second international conference on computer and network technology, pp. 262–66.
  • Hu, J. 2010. Host-based anomaly intrusion detection. In Stavroulakis, P., Stamp, M. edited by Handbook of information and communication security, 235–55, Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-04117-4_13.
  • Jabez, J., and B. Muthukumar. 2015. Intrusion detection system (ids): anomaly detection using outlier detection approach. Procedia Computer Science 48:338–46. doi:10.1016/j.procs.2015.04.191.
  • Jamdagni, A., Z. Tan, X. H. Z, P. Nanda, and R. P. Liu. 2013. Repids: A multi-tier real-time payload-based intrusion detection system. Computer Networks 57 (3):811–24. doi:10.1016/j.comnet.2012.10.002.
  • Jiang, W., H. Li, S. Liu, X. Luo, and R. Lu. 2020. Poisoning and evasion attacks against deep learning algorithms in autonomous vehicles. IEEE Transspot Vehicles Technology 69 (4):4439–49. doi:10.1109/TVT.2020.2977378.
  • Jonker, M., A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti. 2017. “Millions of targets under attack: A macroscopic characterization of the DoS ecosystem.” Proceedings of the 2017 Internet Measurement Conference, pp. 100–13.
  • Khan, R. U., X. Zhang, M. Alazab, and R. Kumar. 2019. “An improved convolutional neural network model for intrusion detection in networks.” Cybersecurity and cyberforensics conference, Melbourne, Australia, pp. 74–77 doi:10.1109/CCC.2019.000-6.
  • Kim, J., J. Kim, H. L. T. Thu, and H. Kim, . 2016b. “Long short term memory recurrent neural network classifier for intrusion detection.” 2016 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, pp. 1–5 doi:10.1109/PlatCon.2016.7456805.
  • Kim, G., H. Yi, J. Lee, Y. Paek, and S. Yoon. 2016a. LSTM-based system-call language modeling and robust ensemble method for designing host-based intrusion detection systems. arXiv preprint arXiv:1611.01726.
  • Koc, L., T. A. Mazzuchi, and S. Sarkani. 2012. A network intrusion detection system based on a hidden naïve bayes multiclass classifier. Expert Systems with Applications 39 (18):13492–500. doi:10.1016/j.eswa.2012.07.009.
  • Koroniotis, N., N. Moustafa, E. S. N, and B. Turnbull. 2019. Towards the development of realistic botnet dataset in the Internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems 100:779–96. doi:10.1016/j.future.2019.05.041.
  • Kuang, F., W. Xu, and S. Zhang. 2014. A novel hybrid KPCA and SVM with GA model for intrusion detection. Applied Soft Computing 18:178–84. doi:10.1016/j.asoc.2014.01.028.
  • Larson, D. 2016. Distributed denial of service attacks–holding back the flood. Network Security 2016 (3):5–7. doi:10.1016/S1353-4858(16)30026-5.
  • Lippmann, R. P., D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, and M. A. Zissman. 2000. “Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation.” Proceedings DARPA Information Survivability Conference and Exposition. Hilton Head,USA, DISCEX 2:12–26 doi:10.1109/DISCEX.2000.821506.
  • Loukas, G., E. Karapistoli, E. Panaousis, P. Sarigiannidis, A. Bezemskij, and T. Vuong. 2019. A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles. Advanced Hoc Network 84:124–47. doi:10.1016/j.adhoc.2018.10.002.
  • Low, P. 2017. Insuring against cyber-attacks. Computer Fraud & Security 2017 (4):18–20. doi:10.1016/S1361-3723(17)30034-9.
  • Mahdavifar, S., and A. A. Ghorbani. 2019. Application of deep learning to Cybersecurity: A survey. Neurocomputing 347:149–76. doi:10.1016/j.neucom.2019.02.056.
  • Mahloujifar, S., D. I. Diochnos, and M. Mahmoody. 2019. Learning under p-tampering poisoning attacks. Annual Mathmateical Artificial Intellegent 1–34.
  • Mcintosh, T., J. Jang-Jaccard, P. Watters, and T. Susnjak. 2019. “The inadequacy of entropy-based ransomware detection.” International conference on neural information processing, Sydney, Australia, pp.181–89 doi:10.1007/978-3-030-36802-9_20.
  • Milenkoski, A., M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne. 2015. Evaluating computer intrusion detection systems: A survey of common practices. ACM Computer Survey 48 (1):12. doi:10.1145/2808691.
  • Mnih, V., M. AdriaPuigdomenechbadia, A. Mirza, T. Graves, T. Lillicrap, D. Harley, and K. Kavukcuoglu, 2016. “Asynchronous methods for deep reinforcement learning” International Conference on Machine Learning, pp. 1928–37.
  • Mukkamala, S., A. Sung, and A. Abraham. 2006. V. R. Vemuri, Enhancing Computer Security with Smart Technology., CRC Press: USA. 125–63.
  • Nadiammai, G. V., and M. J. E. I. J. Hemalatha. 2014. Effective approach toward Intrusion Detection System using data mining techniques. Egyptian Informatics Journal 15 (1):37–50. doi:10.1016/j.eij.2013.10.003.
  • Pan, S., T. Morris, and U. Adhikari. 2015. Developing a hybrid intrusion detection system using data mining for power systems. IEEE Transactions on Smart Grid 6 (6):3104–13. doi:10.1109/TSG.2015.2409775.
  • Radford, A., L. Metz, and Soumithchintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial network. ArXiv preprint arXiv:1511.06434.
  • Rezvy, S., M. Petridis, A. Lasebae, and T. Zebin. 2018, .” Intrusion detection and classification with autoencoded deep neural network.” International Conference on Security for Information Technology and Communications, Bucharest, Romania, Springer pp. 142–56.
  • Ring, M., S. Scheuring, D. Landes, A. Hotho, and A. Hotho. 2019. A survey of network-based intrusion detection data sets. Computers &ampsecurity 86( Comput. Secur.):147–67. doi:10.1016/j.cose.2019.06.005.
  • Sarker, I. H., S. B. Asm Kayes, H. Alqahtani, P. Watters, A. Ng, and A. Ng. 2020. Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data 7 (1):1–29. doi:10.1186/s40537-020-00318-5.
  • Sharafaldin, I., A. H. Lashkari, and A. A. Ghorbani. 2018. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp 1:108–16.
  • Shenfield, A., D. Day, and A. Ayesh. 2018. Intelligent intrusion detection systems using artificial neural networks. ICT Express 4 (2):95–99. doi:10.1016/j.icte.2018.04.003.
  • Shiravi, A., H. Shiravi, M. Tavallaee, and A. A. Ghorbani. 2012. Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Computers & Security 31 (3):357–74. doi:10.1016/j.cose.2011.12.012.
  • Shoaib, M., S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga. 2014. Fusion of smartphone motion sensors for physical activity recognition. Sensors 14 (6):10146–76. doi:10.3390/s140610146.
  • Sihag, S., and A. Tajer. 2020. “Secure estimation under causative attacks.“ IEEE Transactions on Information Theory. doi:10.1109/TIT.2020.2985956
  • Singh, R., H. Kumar, and R. K. Singla. 2015. An intrusion detection system using network traffic profiling and online sequential extreme learning machine. Expert Systems with Applications 42 (22):8609–24. doi:10.1016/j.eswa.2015.07.015.
  • Tang, T. A., D. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho. 2016. “Deep learning approach for network intrusion detection in software defined networking.” 2017 international conference on wireless networks and mobile communications, pp. 258–63.
  • Tavallaee, M., E. Bagheri, W. Lu, and A. A. Ghorbani. 2009. “A detailed analysis of the KDD CUP 99 data set.” 2009 IEEE symposium on computational intelligence for security and defense applications, Ottawa, Canada, pp. 1–6 doi:10.1109/CISDA.2009.5356528.
  • Van, N. T., and T. N. Thinh. 2017. “An anomaly-based network intrusion detection system using deep learning.” 2017 international conference on system science and engineering (ICSSE), pp. 210–14
  • Wu, P., and H. Guo. 2019. “LuNET: A deep neural network for network intrusion detection. “2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, pp. 617–24 doi:10.1109/SSCI44817.2019.9003126.
  • Wu, Z., J. Wang, L. Hu, Z. Zhang, and H. Wu. 2020. A network intrusion detection method based on semantic re-encoding and deep learning. Journal of Network and Computer Applications 164:102688. doi:10.1016/j.jnca.2020.102688.
  • Xin, Y., L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018. Machine learning and deep learning methods for cybersecurity. IEEE Access 6:35365–81.
  • Xiong, C., and Q. Yu. 2018. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle. Applied Energy 1211:538–48 doi:10.1016/j.apenergy.2017.11.072
  • Yang, X., K. Lingshuang, L. Zhi, C. Yuling, L. Yanmiao, Z. Hongliang, G. Mingcheng, H. Haixia, and W. Chunhua. 2018a. Machine learning and deep learning methods for cybersecurity. IEEE Access 6:35365–81.
  • Ye, Y., T. Li, D. Adjeroh, and S. S. Iyengar. 2018. A survey on malware detection using data mining techniques. ACM Computing Surveys (CSUR) 50 (3):1–40. doi:10.1145/3073559.
  • Yin, C., Y. Zhu, J. Fei, and X. He. 2017. A deep learning approach for intrusion detection using recurrent neural networks. Ieee Access 5:21954–61. doi:10.1109/ACCESS.2017.2762418.
  • Zhang, H., X. Yu, P. Ren, C. Luo, and G. Min. 2019. Deep adversarial learning in intrusion detection: A data augmentation enhanced framework. arXiv preprint arXiv:1901.07949.
  • Zhengbing, H., L. Zhitang, and W. Junqi, 2008. “A novel network intrusion detection system (nids) based on signatures search of data mining.” First International Workshop on Knowledge Discovery and Data Mining, pp. 10–16.