1,419
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using a Layered Ensemble of Physics-Guided Graph Attention Networks to Predict COVID-19 Trends

, , ORCID Icon, &
Article: 2055989 | Received 05 Dec 2021, Accepted 16 Mar 2022, Published online: 04 Apr 2022

References

  • Almeshal, A. M., A. I. Almazrouee, M. R. Alenizi, and S. N. Alhajeri. 2020. Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models. Applied Sciences. 10(10):3402. https://doi.org/10.3390/app101034022076-3417.
  • Avelar, P., H. Lemos, M. Prates, and L. Lamb. 2019. Multitask learning on graph neural networks: Learning multiple graph centrality measures with a unified network. In artificial neural networks and machine learning – ICANN 2019: Workshop and special. In Sessions, isbn: 9783, isbn: 9783030304935, ed. 030304935, ed. I. V. Tetko, V. Kůrková, P. Karpov, and F. Theis, 701–2734. Cham: Springer International Publishing.
  • Chaturvedi, D., and U. Chakravarty. 2021. Predictive analysis of COVID-19 eradication with vaccination in India, Brazil, and U.S.A. Infection, Genetics and Evolution 92 (104834):1567–1348. https://doi.org/10.1016/j.meegid.2021.104834.
  • Chen, Y., T.-J. Yang, J. Emer, and V. Sze. 2018. Understanding the limitations of existing energy-efficient design approaches for deep neural networks. Energy 2 (L1):L3.
  • Deng, S., S. Wang, H. Rangwala, L. Wang, and Y. Ning. 2020. “Cola- GNN: Cross-Location attention based graph neural networks for long-term ILI pre- diction.” In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 245–54. CIKM ‘20. Virtual Event, Ireland: Association for Computing Machinery. 10.1145/3340531.3411975.
  • El-Rashidy, N., S. Abdelrazik, T. Abuhmed, E. Amer, F. Ali, H. Jong-Wan, and S. El-Sappagh. 2021. Comprehensive survey of using machine learning in the COVID-19 pandemic. Diagnostics. 11(7):1155.https://doi.org/10.3390/diagnostics110711552075-4418.
  • ElAraby, M., O. Elzeki, M. Shams, A. Mahmoud, and H. Salem. 2022. A novel Gray-Scale spatial exploitation learning Net for COVID-19 by crawling Internet resources. Biomedical Signal Processing and Control 73 (March):103441. https://doi.org/10.1016/j.bspc.2021.103441.
  • Feng, Z., S. Towers, and Y. Yang. 2011. Modeling the effects of vaccination and treatment on pandemic influenza. The AAPS Journal 13 (3):427–37. https://doi.org/10.1208/s12248-011-9284-7.
  • Gao, J., R. Sharma, C. Qian, L. Glass, J. Spaeder, J. Romberg, J. Sun, and C. Xiao. 2021. STAN: Spatio-temporal attention network for pandemic prediction using real-world ev- idence. Journal of the American Medical Informatics Association 28 4 (January):733–43. https://doi.org/10.1093/jamia/ocaa3221527-974X.
  • Gong, L., and Q. Cheng. 2018. Adaptive edge features guided graph attention networks. CoRR abs/1809.02709. arXiv: 1809.02709. http://arxiv.org/abs/1809.02709.
  • Hamilton, W. L. 2020. Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 14(3):1–159.
  • Interim Guidance on Duration of Isolation and Precautions for Adults with COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html#key-findings.
  • Kapoor, A., X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais, and S. O’Banion. 2020. Examining COVID-19 forecasting using spatio-temporal graph neural networks. CoRR. abs/2007.03113. abs/2007.03113. https://arxiv.org/abs/2007.03113
  • Karpatne, A., W. Watkins, J. Read, and V. Kumar. 2018. Physics-guided neu- ral networks (PGNN): An application in lake temperature modeling. CoRR abs/1710.11431. arXiv: 1710.11431 [cs.LG].
  • Kermack, W., A. McKendrick, and G. Walker. 1927. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Cha R Acter. 115(772):700–21. https://doi.org/10.1098/rspa.1927.0118. eprint. https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1927.0118
  • Liang, Y., Z. Shi, S. Sritharan, and H. Wan. 2010. Simulation of the spread of epidemic disease using persistent surveillance data. In Proceeding of COMSOL 2010, October 7-9, Boston, USA. October. eprint: https://www.comsol.com/paper/simulation-of-the-spread-of-epidemic-disease-using-persistent-surveillance-data-9134.
  • Mathieu, E., H. Ritchie, E. Ortiz-Ospina, M. Roser, J. Hasell, C. Appel, C. Giattino, and L. Rodés-Guirao. 2021. A global database of COVID-19 vaccinations. Nature Human Behaviour (May), 2397–3374. doi:10.1038/s41562-021-01122-8.
  • Niazkar, H. R., and M. Niazkar. 2020. Covid-19 outbreak: Application of multi-gene genetic programming to country-based prediction models. Electronic Journal of General Medicine 17 (5):em247. doi:10.29333/ejgm/8232.
  • Niu, Y., L. Zhuoyang, L. Meng, S. Wang, Z. Zhao, T. Song, L. Jianhua, T. Chen, L. Qun, and X. Zou. 2021. The collaboration between infectious dis- ease modeling and public health decision-making based on the COVID-19. Journal of Safety Science and Resilience 2 (2):69–76. https://www.sciencedirect.com/science/article/pii/S2666449621000153.
  • Olive, X., M. Strohmeier, and J. Lübbe. 2021. Crowdsourced air traffic data from the open- sky network 2020. Earth Syst. Sci. Data 13:357–366. doi:10.5281/zenodo.4737390.
  • Prakash, K. B., S. Sagar Imambi, T. P. K. Mohammed Ismail, and Y. V. R Nagar Pawan. 2020. Analysis, prediction and evaluation of COVID-19 datasets using machine learning algorithms. International Journal of Emerging Trends in Engineering Research 8 5(May):2199–204. doi:10.30534/ijeter/2020/11785202023473983.
  • Qiong, J., Y. Guo, G. Wang, and S. J. Barnes. 2020. Big data analytics in the fight against major public health incidents (Including COVID-19): A conceptual framework. International Journal of Environmental Research and Public Health 17 (17):1660–4601. https://doi.org/10.3390/ijerph17176161.
  • Rai, R., and C. Sahu. 2020. Driven by data or derived through physics? a review of hybrid physics guided machine learning techniques with Cyber-Physical System (CPS) focus. IEEE Access 8:71050–73. doi:10.1109/ACCESS.2020.2987324.
  • Ruder, S. 2017. An overview of multi-task learning in deep neural networks. CoRR abs/1706.05098. arXiv: 1706.05098 http://arxiv.org/abs/1706.05098.
  • Scarselli, F., M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The graph neural network model. IEEE Transactions on Neural Networks 20 (1):61–80. https://doi.org/10.1109/TNN.2008.2005605.
  • Shams, M. Y., O. M. Elzeki, L. M. Abouelmagd, A. Ella Hassanien, M. Hamed Abd Elfattah, and H. Salem. 2021. HANA: A healthy artificial nutri- tion analysis model during COVID-19 pandemic. Computers in Biology and Medicine 135:104606. https://www.sciencedirect.com/science/article/pii/S0010482521004005.
  • Shinde, G. R., A. B. Kalamkar, P. N. Mahalle, N. Dey, J. Chaki, and A. Ella Hassanien. 2020. Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Computer Science 1 (4):4. https://doi.org/10.1007/s42979-020-00209-9.
  • Subramanian, S., S. Sourabh Mohakuda, P. S. N. Ankit Kumar, A. Kumar Yadav, K. Chatterjee, and K. Chatterjee. 2021. Systematic review of predic- tive mathematical models of COVID-19 epidemic. SPECIAL ISSUE: COVID-19 - NAV- IGATING THROUGH CHALLENGES, Medical Journal Armed Forces India 77:S385–S392 . https://doi.org/10.1016/j.mjafi.2021.05.005.
  • Velickovic, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018. Graph Attention Networks. arXiv. arXiv:1710.10903 [ stat.ML].
  • Wang, P., X. Zheng, A. Gang, D. Liu, and B. Zhu. 2020. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos, Solitons, and Fractals. 140(110214):0960–0779.https://www.sciencedirect.com/science/article/pii/S096007792030610X.
  • Willard, J., X. Jia, S. Xu, M. Steinbach, and V. Kumar. 2021. Integrating scientific knowledge with machine learning for engineering and environmental systems. arXiv. arXiv: 2003.04919 [physics.comp-ph].
  • Zhang, Y., and Q. Yang. 2017. A survey on multi-task learning. CoRR abs/1707.08114. arXiv: 1707.08114. http://arxiv.org/abs/1707.08114.