2,174
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Context-Aware Artificial Intelligence-based System to Support Street Crossings For Pedestrians with Visual Impairments

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2062818 | Received 07 Feb 2022, Accepted 01 Apr 2022, Published online: 12 Apr 2022

References

  • Balasuriya, B. K., N. P. Lokuhettiarachchi, A. R. M. D. N. Ranasinghe, K. D. C. Shiwantha, and C. Jayawardena. 2017. Learning platform for visually impaired children through artificial intelligence and computer vision 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA) (Manhattan, New York, U.S.: IEEE) Colombo, Sri Lanka 1–2821 doi:10.1109/SKIMA.2017.8294106.
  • Baumgatner, A., T. Rohrbach, and P. Schönhagen. 2021. ‘if the phone were broken, i’d be screwed’: Media use of people with disabilities in the digital era. Disability and Society 1–25. doi:10.1080/09687599.2021.1916884.
  • Brunetti, A., D. Buongiorno, G. F. Trotta, and V. Bevilacqua. 2018. Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300:17–33. Retrieved from https://www.sciencedirect.com/science/article/pii/S092523121830290X
  • Cheng, R., K. Wang, K. Yang, N. Long, J. Bai, and D. Liu. August 2018. Real-time pedes- trian crossing lights detection algorithm for the visually impaired. Multimedia Tools and Applications 77(16):20651–71. doi: 10.1007/s11042-017-5472-5.
  • Cheng, R., K. Wang, K. Yang, N. Long, and H. Weijian. October 2017. Crosswalk navigation for people with visual impairments on a wearable device. Journal of Electronic Imaging 26:1.
  • Chinchole, S., and S. Patel. 2017. Artificial intelligence and sensors based assistive system for the visually impaired people. 2017 International Conference on Intelligent Sustainable Systems (ICISS) SCAD Institute of Technology, Palladam, India . 16–19 doi:10.1109/ISS1.2017.8389401.
  • Ghilardi, M. C., G. Simões, J. Wehrmann, I. H. Manssour, and R. C. Barros. 2018 Real-Time Detection of Pedestrian Traffic Lights for Visually-Impaired People 2018 International Joint Conference on Neural Networks (IJCNN) Rio de Janeiro, Brazil. 1–8 doi:10.1109/IJCNN.2018.8489516.
  • Habib, A., M. Islam, M. Kabir, M. Mredul, and M. Hasan. 2019, November. Staircase detec- tion to guide visually impaired people: A hybrid approach. ( Retrieved from) Revued’Intelligence Artificielle 33 (5):327–34. doi: 10.18280/ria.330501.
  • Hakobyan, L., J. Lumsden, D. O’Sullivan, and H. Bartlett. September 2013. Mobile assistive technologies for the visually impaired. Survey of Ophthalmology 58(6):513–28. doi: 10.1016/j.survophthal.2012.10.004.
  • Henry, S. (2007). Just ask: Integrating accessibility throughout design. Lulu.com. Retrieved from https://books.google.es/books?id=hRnpXbFB06cC
  • Ihejimba, C., and R. Z. Wenkstern. 2020. Detectsignal: Acloud-based traffic signal notification system for the blind and visually impaired, 2020 IEEE International Smart Cities Conference (ISC2) , 1–6 doi:10.1109/ISC251055.2020.9239004.
  • Islam, M. M., and M. S. Sadi. 2018. Path Hole Detection to Assist the Visually Impaired People in Navigation 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT) Bangladesh (Manhattan, New York, U.S.: IEEE) 268–73 doi:10.1109/CEEICT.2018.8628134.
  • Khan, A., S. Khusro, and J. D. Camba. 2020. An insight into smartphone-based assistive solutions for visually impaired and blind people: Issues, challenges and opportunities. Universal Access in the Information Society 1–34. doi:10.1007/s10209-020-00776-x.
  • Krajnc, E., J. Feiner, and S. Schmidt. 2010. User centered interaction design for mobile applications focused on visually impaired and blind people. In Leitner, G., Hitz, M., Holzinger, A. (eds) HCI in Work and Learning, Life and Leisure. USAB 2010. Lecture Notes in Computer Science. 195–202. Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-16607-5_12
  • Lancioni, G. E., N. N. Singh, M. F. O’Reilly, J. Sigafoos, G. Alberti, V. Chiariello, and L. Carrella. 2020. Everyday technology to support leisure and daily activities in people with intellectual and other disabilities. Developmental Neurorehabilitation PMID: 32118503. 23 (7):431–38. doi:10.1080/17518423.2020.1737590.
  • Li, X., H. Cui, J.-R. Rizzo, E. Wong, and Y. Fang. 2019. Cross-safe: Acomputer vision-based approach to make all intersection-related pedestrian signals accessible for the visually impaired , April. Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing 944 . In (pp. 132146). 132146). Switzerland: Springer International Publishing 978-3-030-17798-0. doi:10.1007/978-3-030-17798-0_13
  • Mahmud, S., R. Haque Sourave, M. Islam, X. Lin, and J.-H. Kim. 2020. A vision based voice controlled indoor assistant robot for visually impaired people. 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (Manhattan, New York, U.S.) . 1–6 doi:10.1109/IEMTRONICS51293.2020.9216359.
  • Molina-Cantero, A. J., C. Lebrato-Vázquez, M. Merino-Monge, R. Quesada-Tabares, J. A. Castro- García, and I. M. Gómez-González. 2019. Communication technologies based on voluntary blinks: Assessment and design. IEEE Access 7:70770–98. doi:10.1109/ACCESS.2019.2919324.
  • Montanha, A., M. J. Escalona, F. J. Dominguez-Mayo, and A. M. Polidorio. 2016. A technological innovation to safely aid in the spatial orientation of blind people in a complex urban environment 2016 International Conference on Image, Vision and Computing (ICIVC) . August. Manhattan, New York, U.S.: IEEE 102–107. doi:10.1109/ICIVC.2016.7571281.
  • Montanha, A., A. M. Polidorio, and M. Romero-Ternero April 2021. New signal location method based on signal-range data for proximity tracing tools. Journal of Network and Computer Applications 180:103006. doi: 10.1016/j.jnca.2021.103006.
  • Qureshi, H. H., and D. H.-T. Wong. 2019. A systematic literature review on user-centered design (UCD) interface of mobile application for visually impaired people, HCI International 2019 – Late Breaking Posters . (pp. 168175). Springer International Publishing, 168–175. doi:10.1007/978-3-030-30712-7_23.
  • Retorta, M., and V. Cristovão. July 2017. Visually-impaired Brazilian students learning English with smartphones: Overcoming limitations. Languages 2(3):12. doi: 10.3390/languages2030012.
  • Suzuki, L. R. 2017. Smart cities IoT: Enablers and technology road map. In Smart City Networks: Through the Internet of Things, 167–90. ISBN: 978-3-319-61313-0. doi:10.1007/978-3-319-61313-0_10. Berlin: Springer International Publishing.
  • Tian, S., M. Zheng, W. Zou, X. Li, and L. Zhang. 2021. Dynamic crosswalk scene under- standing for the visually impaired. IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (29):1478–86. doi:10.1109/TNSRE.2021.3096379.
  • World Health Organization. (2021, October). Blindness and vision impairment. Retrieved from https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
  • World Wide Web Consortium”. (2008, December). Web content accessibility guidelines 2.0. Retrieved from https://www.w3.org/
  • Yang, K., R. Cheng, L. M. Bergasa, E. Romera, K. Wang, and N. Long. 2018. Intersection perception through real-time semantic segmentation to assist navigation of visually impaired pedestrians. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (Manhattan, New York, U.S.: IEEE), 1034–39 doi:10.1109/ROBIO.2018.8665211.
  • Yu, S., H. Lee, and J. Kim. 2019. Street Crossing Aid Using Light-Weight CNNs for the Visually Impaired IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) 2019 , October. Manhattan, New York, U.S.: IEEE doi:10.1109/ICCVW.2019.00317.