2,259
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Intelligence based Accurate Medium and Long Term Load Forecasting System

, ORCID Icon, , , , , & show all
Article: 2088452 | Received 21 Dec 2021, Accepted 07 Jun 2022, Published online: 26 Jun 2022

References

  • Abdulnabi, A. H., G. Wang, J. Lu, and K. Jia. November 2015. Multi-task CNN model for attribute prediction. IEEE Transactions on Multimedia 17(11):1949–2089. doi: 10.1109/TMM.2015.2477680.
  • Al-Musaylh, M. S., R. C. Deo, J. F. Adamowski, and Y. Li. 2018. Short-term electricity demand forecasting with mars, svr and arima models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics 35 (January):1–16. https://linkinghub.elsevier.com/retrieve/pii/S1474034617301477.
  • AMJADY, N., and F. KEYNIA. 2009. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy. 34(January):46–57. no. 1. 10.1016/j.energy.2008.09.020.
  • Bair, E., T. Hastie, D. Paul, and R. Tibshirani. March 2006. Prediction by supervised principal components. Journal of the American Statistical Association 101(473):119–37. doi: 10.1198/016214505000000628.
  • Bengio, Y. 2009. Learning deep architectures for AI. Foundations and Trends® in Machine Learning 2 (1):1–127. http://www.nowpublishers.com/article/Details/MAL-006.
  • Bengio, Y. 2013. Deep Learning of Representations: Looking Forward. 7978 LNAI. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1–37.
  • Bozchalui, M. C., S. A. Hashmi, H. Hassen, C. A. Canizares, and K. Bhattacharya. December, 2012. Optimal operation of residential energy hubs in smart grids. IEEE Transactions on Smart Grid 3 (4):1755–66. doi:10.1109/TSG.2012.2212032
  • Burnham, K. P., and D. R. Anderson, eds. 2004. Model selection and multimodel inference. New York: Springer New York.
  • Cai, M., M. Pipattanasomporn, and S. Rahman. 2019. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Applied Energy 236 (February):1078–88. doi:10.1016/j.apenergy.2018.12.042.
  • Canizo, M., I. Triguero, A. Conde, and E. Onieva. 2019. Multi-head CNN–RNN for multi-time series anomaly detection: an industrial case study. Neurocomputing 363 (October):246–60. doi:10.1016/j.neucom.2019.07.034.
  • Cao, C., F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and Z. Xie. 2018. Deep learning and its applications in biomedicine. Genomics, Proteomics & Bioinformatics 16 (1):17–32. doi:10.1016/j.gpb.2017.07.003.
  • Ceperic, E., V. Ceperic, and A. Baric. November, 2013. A strategy for short-term load forecasting by support vector regression machines. IEEE Transactions on Power Systems 28 (4):4356–64. doi:10.1109/TPWRS.2013.2269803
  • Chan, S. C., K. M. Tsui, H. C. Wu, Y. Hou, Y.-C. Wu, and F. Wu. September 2012. Load/price forecasting and managing demand response for smart grids: methodologies and challenges. IEEE Signal Processing Magazine 29(5):68–85. doi: 10.1109/MSP.2012.2186531.
  • Chen, H., D. Ni, J. Qin, S. Li, X. Yang, T. Wang, and P. A. Heng. 2015. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE Journal of Biomedical and Health Informatics 19 (5):1627–36. doi:10.1109/JBHI.2015.2425041.
  • Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. 2018. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence no. 4. 40 (4):834–48. doi:10.1109/TPAMI.2017.2699184.
  • Cho, K., and Y. Kim. 2022. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. Journal of Hydrology 605 (February):127297. https://linkinghub.elsevier.com/retrieve/pii/S0022169421013470.
  • Ertugrul, Ö. F. 2016. Forecasting electricity load by a novel recurrent extreme learning machines approach. International Journal of Electrical Power & Energy Systems 78 (June):429–35. doi:10.1016/j.ijepes.2015.12.006.
  • Fan, G.-F., -L.-L. Peng, and W.-C. Hong. 2018. Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Applied Energy. 224(August):13–33. no. 224. 10.1016/j.apenergy.2018.04.075.
  • Faria, P., and Z. Vale. August 2011. Demand response in electrical energy supply: an optimal real time pricing approach. Energy 36(8):5374–84. doi: 10.1016/j.energy.2011.06.049.
  • Fukushima, K., and S. Miyake. 1982. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. 267–85.
  • Ghahramani, Z. 2004. Unsupervised Learning. 72–112.
  • Ghofrani, M., M. Ghayekhloo, A. Arabali, and A. Ghayekhloo. 2015. A hybrid short-term load forecasting with a new input selection framework. Energy no. 81. 81 (March):777–86. doi:10.1016/j.energy.2015.01.028.
  • Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–87. IEEE.
  • Glorot, X., A. Bordes, and Y. Bengio. 2011. Deep sparse rectifier neural networks. AISTATS ’11: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics 15: 315–23.
  • Goodfellow, I., Y. Bengio, and C.A. 2016. Deep Learning.
  • Günther, J., P. M. Pilarski, G. Helfrich, H. Shen, and K. Diepold. 2014. First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technology 15:474–83. doi:10.1016/j.protcy.2014.09.007.
  • Guo, Y., Y. Liu, A. Oerlemans, S. Lao, S. Wu, Y. G. L.m, Y. Liu, A. Oerlemans, S. Lao, S. Wu, et al. 2016. Deep learning for visual understanding: a review. Neurocomputing no. 187. 187 (April):27–48. doi:10.1016/j.neucom.2015.09.116.
  • Gupta, A., M. S. Ayhan, and A. S. Maida. 2013. Natural image bases to represent neuroimaging data. Journal of Machine Learning Research: Workshop and Conference Proceedings 28 (3):977–84.
  • Gupta, S., P. Arbeláez, R. Girshick, and J. Malik. 2015. Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection and semantic segmentation. International Journal of Computer Vision 112 (2):133–49. doi:10.1007/s11263-014-0777-6.
  • Gupta, S., R. Girshick, P. Arbeláez, and J. Malik. 2014. Learning rich features from RGB-D images for object detection and segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8695 LNCS (PART 7):345–60.
  • Han, L., Y. Peng, Y. Li, B. Yong, Q. Zhou, and L. Shu. 2019. Enhanced deep networks for short-term and medium-term load forecasting. IEEE Access 7:4045–55. doi:10.1109/ACCESS.2018.2888978.
  • He, K., X. Zhang, S. Ren, and J. Sun 2016a. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition. Vol. 64.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016b. Deep residual learning for image recognition.
  • He, Y., Q. Xu, J. Wan, and S. Yang. 2016. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function. Energy. 114(November):498–512. no. 114. 10.1016/j.energy.2016.08.023.
  • Hinton, G. 2009. Deep belief networks. Scholarpedia 4 (5):5947. http://www.scholarpedia.org/article/Deep_belief_networks.
  • Hinton, G., L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Processing Magazine. 29(6):82–97. doi:10.1109/MSP.2012.2205597.
  • Hinton, G. E., S. Osindero, and Y.-W. Teh. July 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18(7):1527–54. doi: 10.1162/neco.2006.18.7.1527.
  • Hochreiter, S. S., Schmidhuber, and J. J. 1997. Long short-term memory. Neural Computation 9 (8):1735–80. doi:10.1162/neco.1997.9.8.1735.
  • Huo, J., T. Shi, and J. Chang. 2016. Comparison of random forest and svm for electrical short-term load forecast with different data sources. In 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 1077–80. IEEE. http://ieeexplore.ieee.org/document/7883252/.
  • Hussain, L., S. Saeed, A. Idris, I. A. I. A. Awan, S. A. S. A. Shah, A. Majid, B. Ahmed, and Q.-A. Q.-A. Chaudhary. 2019. Regression analysis for detecting epileptic seizure with different feature extracting strategies. Biomedical Engineering/Biomedizinische Technik 64 (6) no. 6December18: 619–42. 10.1515/bmt-2018-0012
  • Karpathy, A., and L. Fei-Fei. 2015. Deep visual-semantic alignments for generating image descriptions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3128–37. Boston, MA, USA: IEEE.
  • Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. 2014. Large-scale video classification with convolutional neural networks. Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference On: 1725–32.
  • khantach, E., A. M. Hamlich, and N. Eddine Belbounaguia. 2019. Short-term load forecasting using machine learning and periodicity decomposition. AIMS Energy 7 (3):382–94. http://www.aimspress.com/article/10.3934/energy.2019.3.382.
  • Khator, S. K., and L. C. Leung. 1997. “Power distribution planning: a review of models and issues. ” {IEEE} {Trans}. {Power} {Syst} no. 3. 12 (3):1151–59. doi:10.1109/59.630455.
  • Khotanzad, A., R. Afkhami-Rohani, and D. Maratukulam. 1998a. “ANNSTLF-{artificial} {neural} {network} {short}-{term} {load} {forecaster}- generation three. ” {IEEE} {Trans}. {Power} {Syst} 13(4):1413–22. no. 4. doi:10.1109/59.736285.
  • Khotanzad, A., R. Afkhami-Rohani, and D. Maratukulam. 1998b. ANNSTLF-Artificial Neural Network Short-Term Load Forecaster- generation three. IEEE Transactions on Power Systems 13 (4):1413–22. doi:10.1109/59.736285.
  • Kollia, I., and S. Kollias. 2018. A deep learning approach for load demand forecasting of power systems. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 912–19. IEEE.
  • Kong, W., Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang. 2019. Short-term residential load forecasting based on lstm recurrent neural network. IEEE Transactions on Smart Grid no. 1. 10 (January):841–51. doi:10.1109/TSG.2017.2753802.
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst 25:1106–14.
  • LeCun, Y., and Y. Bengio. 1995. Convolutional networks for images,speech,and time series. Handb. BrainTheoryNeuralNetw.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553): 436–44. May 28. 10.1038/nature14539.
  • LeCun, Y., P. Haffner, L. Bottou, and Y. Bengio. 1999. Object recognition with gradient-based learning. Springer Berlin Heidelberg 319–45.
  • Levi, G., and T. Hassncer. 2015. Age and gender classification using convolutional neural networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 34–42. IEEE.
  • Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. December, 2017. A survey on deep learning in medical image analysis. Medical Image Analysis 42 (1995):60–88. doi:10.1016/j.media.2017.07.005
  • Mamlook, R., O. Badran, and E. Abdulhadi. April, 2009. A fuzzy inference model for short-term load forecasting. Energy Policy 37 (4):1239–48. doi:10.1016/j.enpol.2008.10.051
  • Mehmood Butt, F., L. Hussain, A. Mahmood, and K. Javed Lone. 2021. Artificial intelligence based accurately load forecasting system to forecast short and medium-term load demands. Mathematical Biosciences and Engineering 18 (1):400–25. http://www.aimspress.com/article/doi/10.3934/mbe.2021022.
  • Metaxiotis, K., A. Kagiannas, D. Askounis, and J. Psarras. June, 2003. Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy Conversion and Management 44 (9):1525–34. doi:10.1016/S0196-8904(02)00148-6
  • Moslehi, K., and R. Kumar. 2010. A reliability perspective of the smart grid. IEEE Transactions on Smart Grid no. 1. 1 (June):57–64. doi:10.1109/TSG.2010.2046346.
  • Murthy Balijepalli, V. S. K., V. Pradhan, S. A. Khaparde, and R. M. Shereef. 2011. Review of demand response under smart grid paradigm. In ISGT2011-India, 236–43. IEEE.
  • Oord, A. V. D., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio.
  • Park, K., S. Yoon, and E. Hwang. 2019. Hybrid load forecasting for mixed-use complex based on the characteristic load decomposition by pilot signals. IEEE Access 7:12297–306. doi:10.1109/ACCESS.2019.2892475.
  • Qiu, X., L. Zhang, Y. Ren, P. Suganthan, and G. Amaratunga. 2014. Ensemble deep learning for regression and time series forecasting. In 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), 1–6. IEEE.
  • Ranaweera, D. K., N. F. Hubele, and G. G. Karady. May, 1996. Fuzzy Logic for Short Term Load Forecasting. International Journal of Electrical Power & Energy Systems 18 (4):215–22. doi:10.1016/0142-0615(95)00060-7
  • Rodrigues Moreno, S., R. Gomes da Silva, V. Cocco Mariani, and L. Dos Santos Coelho. 2020. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. Energy Conversion and Management 213 (June):112869. https://linkinghub.elsevier.com/retrieve/pii/S0196890420304076.
  • Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, and Y. L. Rob Fergus. 2013. In-Tegrated Recognition. Localization and Detection Using Convolutional Networks 4:16.
  • Shelhamer, E., J. Long, and T. Darrell. 2017. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (4):640–51. doi:10.1109/TPAMI.2016.2572683.
  • Shin, H. C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers. 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging 35 (5):1285–98. doi:10.1109/TMI.2016.2528162.
  • Shin, H.-C., L. Lu, and R.m.s 2015. Interleaved text/image deep mining on a large-scale radiology database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 17: 1090–99.
  • Shivarama Krishna, K., and K. Sathish Kumar. 2015. A review on hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 52 (December):907–16. doi:10.1016/j.rser.2015.07.187.
  • Singh, P., and P. Dwivedi. 2018. Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. Applied Energy 217 (May):537–49. doi:10.1016/j.apenergy.2018.02.131.
  • Stefenon, S. F., M. H. Dal Molin Ribeiro, A. Nied, V. C. Mariani, L. Dos S. Coelho, D. F. Menegat da Rocha, R. B. Grebogi, and A. E. de B. Ruano. 2020. Wavelet group method of data handling for fault prediction in electrical power insulators. International Journal of Electrical Power & Energy Systems 123 (December):106269. https://linkinghub.elsevier.com/retrieve/pii/S0142061520310711.
  • Sundermeyer, M., H. Ney, and R. Schluter. 2015. From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing no. 3. 23 (March):517–29. doi:10.1109/TASLP.2015.2400218.
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich 2015. Going deeper with convolutions. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. eds. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston
  • Taigman, Y., M. Yang, M. Ranzato, and L. Wolf. 2014. DeepFace: closing the gap to human-level performance in face verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1701–08.
  • Taylor, J. W. August 2003. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society 54(8):799–805. doi: 10.1057/palgrave.jors.2601589.
  • Tian, C., J. Ma, C. Zhang, and P. Zhan. 2018. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11 (12): 3493. December 14. 10.3390/en11123493.
  • Wen, T. H., M. Gasic, N. Mrksic, P. H. Su, D. Vandyke, and S. Young. 2015. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. Computer Science > Computation and Language.
  • Xie, L., J. Wang, Z. Wei, M. Wang, and Q. Tian. 2016. DisturbLabel: regularizing CNN on the Loss Layer. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4753–62. IEEE.
  • Xu, Y., C. Hu, Q. Wu, S. Jian, Z. Li, Y. Chen, G. Zhang, Z. Zhang, and S. Wang. 2022. Research on particle swarm optimization in lstm neural networks for rainfall-runoff simulation. Journal of Hydrology 608 (May):127553. https://linkinghub.elsevier.com/retrieve/pii/S0022169422001287.
  • Yang, J., M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy 2015a. Deep Convolutional Neural Networks on Multi channel Time Series for Human Activity Recognition. In In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence.
  • Yang, L., and H. Yang. 2019. Analysis of different neural networks and a new architecture for short-term load forecasting. Energies 12 (8): 1433. April 14. 10.3390/en12081433.
  • Yang, S., J. Nguyen, M. N. San, P. P. Li, and X. L. Krishnaswamy. 2015b. “Deep convolutional neural networks on {multichannelTimeSeriesforHumanActivityRecognition}. ” in {InProceedingsoftheTwenty}-FourthInternational {JointConferenceonArtificialIntelligence}.
  • Young, T., D. Hazarika, S. Poria, and E. Cambria. 2018. Recent trends in deep learning based natural language processing [review article]. IEEE Computational Intelligence Magazine. 13(August):55–75. no. 3. 10.1109/MCI.2018.2840738.
  • Yuan, C., S. Liu, and Z. Fang. 2016. Comparison of China’s primary energy consumption forecasting by using arima (the autoregressive integrated moving average) model and GM(1,1) model. Energy 100 (April):384–90. doi:10.1016/j.energy.2016.02.001.
  • Zeng, Z., H. Xiao, and X. Zhang. October 2016. Self CNN-based time series stream forecasting. Electronics Letters 52(22):1857–58. doi: 10.1049/el.2016.2626.
  • ZHANG, Z., L. GUO, Y. Dai, X. DONG, and P. WANG. 2018. A short-term user load forecasting with missing data. DEStech Transactions on Engineering and Technology Researchno icmeit (June).
  • Zheng, H., J. Yuan, and L. Chen. August 2017. Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation. Energies 10(8):1168. doi: 10.3390/en10081168.
  • Zheng, Y., Q. Liu, E. Chen, Y. Ge, and J. Zhao. 2014. Time series classification using multi-channels deep convolutional neural networks. In International Conference on Web-Age Information Management; Springer: Cham, Switzerland.