903
Views
3
CrossRef citations to date
0
Altmetric
Research Article

CFD Validation for Assessing the Repercussions of Filter Cake Breakers; EDTA and SiO2 on Filter Cake Return Permeability

ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2112551 | Received 24 Jun 2022, Accepted 09 Aug 2022, Published online: 06 Sep 2022

References

  • Acharya, R. C., S. E. A. T. M. van der Zee, and A. Leijnse. 2004. Porosity–permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Advances in Water Resources 27 (7):707–3099. doi:10.1016/J.ADVWATRES.2004.05.002.
  • Aging Cell, OFITE Style, 500 mL - OFI Testing Equipment, Inc. (n.d.). Retrieved May 10, 2022, from https://www.ofite.com/products/drilling-fluids/product/2393-aging-cell-ofite-style-500-ml
  • Ahmadabadi, E. F., M. Haghshenasfard, and M. N. Esfahany. 2020. CFD simulation and experimental validation of nanoparticles fluidization in a conical spouted bed. Chemical Engineering Research & Design 160:476–85. doi:10.1016/j.cherd.2020.06.018.
  • Al-Ibrahim, H., T. Al Mubarak, M. Almubarak, P. Osode, M. Bataweel, and A. Al-Yami (2015). Chelating agent for uniform filter cake removal in horizontal and multilateral wells: Laboratory analysis and formation damage diagnosis. Society of Petroleum Engineers - SPE Saudi Arabia Section Annual Technical Symposium and Exhibition Al-Khobar, Saudi Arabia. 10.2118/177982-ms
  • Amanullah, M., and A. M. Al-Tahini (2009). Nano-technology- its significance in smart fluid development for oil and gas field application. Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium 2009 AlKhobar, Saudi Arabia. 10.2118/126102-ms
  • Baba Hamed, S., and M. Belhadri. 2009. Rheological properties of biopolymers drilling fluids. Journal of Petroleum Science and Engineering 67 (3–4):84–90. doi:10.1016/J.PETROL.2009.04.001.
  • Bageri, B. S., A. R. Adebayo, A. Barri, J. Al Jaberi, S. Patil, S. R. Hussaini, and R. S. Babu. 2019. Evaluation of secondary formation damage caused by the interaction of chelated barite with formation rocks during filter cake removal. Journal of Petroleum Science and Engineering 183 (August):106395. doi:10.1016/j.petrol.2019.106395.
  • Bageri, B. S., M. Mahmoud, A. Abdulraheem, S. H. Al-Mutairi, S. M. Elkatatny, and R. A. Shawabkeh. 2017 December. Single stage filter cake removal of barite weighted water based drilling fluid. Journal of Petroleum Science and Engineering 149(2015):476–84. doi:10.1016/j.petrol.2016.10.059.
  • Candler, J. E., J. H. Rushing, A. J. J. Leuterman, and M. D. F. Co. 1993. Synthetic-based mud systems offer environmental benefits over traditional mud systems this paper addresses critical issues concerning the. Society of Petroleum Engineers SPE 25993 SPE 25993.
  • Chengara, A., A. D. Nikolov, D. T. Wasan, A. Trokhymchuk, and D. Henderson. 2004. Spreading of nanofluids driven by the structural disjoining pressure gradient. Journal of Colloid and Interface Science 280 (1):192–201. doi:10.1016/J.JCIS.2004.07.005.
  • Chilingar, G. V., and P. Vorabutr. 1981. Drilling and drilling fluids Developments in petroleum science 11 . .
  • Cundall, P. A., and O. D. L. Strack. 1979. A discrete numerical model for granular assemblies. Geotechnique 29 (1):47–65. doi:10.1680/GEOT.1979.29.1.47.
  • Deshpande, R., S. Antonyuk, and O. Iliev. 2020. DEM-CFD study of the filter cake formation process due to non-spherical particles. Particuology 53:48–57. doi:10.1016/j.partic.2020.01.003.
  • Elkatatny, S. M., M. A. Mahmoud, and H. A. Nasr-El-Din (2011). A new technique to characterize drilling fluid filter cake. Society of Petroleum Engineers - 9th European Formation Damage Conference 2011 Noordwijk, The Netherlands, 2, 879–92. 10.2118/144098-ms
  • Elman, H. C., D. J. Silvester, and A. J. Wathen. 2014. The Navier–Stokes Equations. Finite Elements and Fast Iterative Solvers 333–58. doi:10.1093/acprof:oso/9780199678792.003.0009.
  • Fakhreldin, Y., and H. Sharji (2010). Novel fluid formulations to remove mud filter-cake without affecting rock mineralogy. SPE Production and Operations Symposium, Proceedings Tunis, Tunisia, 538–59. 10.2118/136093-ms
  • Falahati, N., K. Chellappah, and A. F. Routh. 2021. Assessing filter cake strength via discrete element method simulations. Chemical Engineering Research & Design 173 (2020):215–23. doi:10.1016/j.cherd.2021.07.016.
  • Farahani, M. V., R. Soleimani, S. Jamshidi, and S. Salehi (2014). Development of a dynamic model for drilling fluid’s filtration: Implications to prevent formation damage. SPE - European Formation Damage Conference, Proceedings, EFDC Lafayette, Louisiana, USA, 1, 396–411. 10.2118/168151-ms
  • Feng, Q., L. Cha, C. Dai, G. Zhao, and S. Wang. 2020. Effect of particle size and concentration on the migration behavior in porous media by coupling computational fluid dynamics and discrete element method. Powder Technology 360:704–14. doi:10.1016/j.powtec.2019.10.011.
  • Fink, J. 2021. Filter cake removal. Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids 419–39. doi:10.1016/b978-0-323-85438-2.00009-8.
  • Fisher, K. A., R. J. Wakeman, T. W. Chiu, and O. F. J. Meuric. 2000. Numerical modelling of cake formation and fluid loss from non-Newtonian muds during drilling using eccentric/concentric drill strings with/without rotation. Chemical Engineering Research & Design 78 (5):707–14. doi:10.1205/026387600527888.
  • Fred Fu, L., and B. A. Dempsey. 1998. Modeling the effect of particle size and charge on the structure of the filter cake in ultrafiltration. Journal of Membrane Science 149 (2):221–40. doi:10.1016/S0376-7388(98)00169-0.
  • Guo, Y., and J. S. Curtis. 2015. Discrete element method simulations for complex granular flows Annual Review of Fluid Mechanics . 47:21–46. doi:10.1146/ANNUREV-FLUID-010814-014644.
  • Hund, D., P. Lösch, M. Kerner, S. Ripperger, and S. Antonyuk. 2020. CFD-DEM study of bridging mechanisms at the static solid-liquid surface filtration. Powder Technology 361:600–09. doi:10.1016/j.powtec.2019.11.072.
  • Hussain, Q. E., and M. A. R. Sharif. 2000. Numerical modeling of helical flow of viscoplastic fluids in eccentric annuli. AIChE Journal 46 (10):1937–46. doi:10.1002/AIC.690461006.
  • Irawan, S., S. Khaleeda, M. Shakeel, and M. Taufiq Fathaddin. 2022. Maximizing well productivity by using filter cake breaker for synthetic-based mud drill-in fluid (SBMDIF) system. Upstream Oil and Gas Technology 9 (August 2021):100075. doi:10.1016/j.upstre.2022.100075.
  • Jahari, A. F., S. R. M. Shafian, H. Husin, N. Razali, and S. Irawan. 2021. Quantification method of suspended solids in micromodel using image analysis. Journal of Petroleum Exploration and Production 11 (5):2271–86. doi:10.1007/s13202-021-01153-x.
  • Kabir, M. A., and I. K. Gamwo. 2011. Filter cake formation on the vertical well at high temperature and high pressure: Computational fluid dynamics modeling and simulations. Journal of Petroleum and Gas Engineering 2 (7):146–64. doi:10.5897/JPGE11.026.
  • Khalil, M., A. Amanda, R. T. Yunarti, B. M. Jan, and S. Irawan. 2020. Synthesis and application of mesoporous silica nanoparticles as gas migration control additive in oil and gas cement. Journal of Petroleum Science and Engineering 195 (July):107660. doi:10.1016/j.petrol.2020.107660.
  • Khan, M. K. A., J. A. Khan, H. Ullah, H. H. Al-Kayiem, S. Irawan, M. Irfan, A. Glowacz, H. Liu, W. Glowacz, and S. Rahman. 2021. De-emulsification and gravity separation of micro-emulsion produced with enhanced oil recovery chemicals flooding. Energies 14 (8):1–14. doi:10.3390/en14082249.
  • Khodja, M., H. Debih, H. Lebtahi, and M. B. Amish. 2022. New HTHP fluid loss control agent for oil-based drilling fluid from pharmaceutical waste. Cleaner Engineering and Technology 8 (March 2021):100476. doi:10.1016/j.clet.2022.100476.
  • Liu, K., Y. Zhao, L. Jia, R. Hao, and D. Fu. 2019. A novel CFD-based method for predicting pressure drop and dust cake distribution of ceramic filter during filtration process at macro-scale. Powder Technology 353:27–40. doi:10.1016/j.powtec.2019.05.014.
  • Mahmoud, H., A. Hamza, M. S. Nasser, I. A. Hussein, R. Ahmed, and H. Karami. 2020 September. Hole cleaning and drilling fluid sweeps in horizontal and deviated wells: Comprehensive review. Journal of Petroleum Science and Engineering 186(2019):106748. doi:10.1016/j.petrol.2019.106748.
  • Mcelfresh, P., C. Olguin, and D. Ector (2012). The application of nanoparticle dispersions to remove paraffin and polymer filter cake damage. Proceedings - SPE International Symposium on Formation Damage Control Lafayette, Louisiana, USA, 2, 1035–41. 10.2118/151848-ms
  • Medhi, S., S. Chowdhury, N. Bhatt, D. K. Gupta, S. Rana, and J. S. Sangwai. 2021. Analysis of high performing graphene oxide nanosheets based non-damaging drilling fluids through rheological measurements and CFD studies. Powder Technology 377:379–95. doi:10.1016/j.powtec.2020.08.053.
  • Mohammadpour, J., S. Husain, F. Salehi, and A. Lee. 2022. Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets. International Communications in Heat and Mass Transfer 130:105808. doi:10.1016/j.icheatmasstransfer.2021.105808.
  • Ofei, T. N., B. Lund, and A. Saasen. 2021. Effect of particle number density on rheological properties and barite sag in oil-based drilling fluids. Journal of Petroleum Science and Engineering 206 (January):108908. doi:10.1016/j.petrol.2021.108908.
  • Ozofor, I. H., V. V. Tarabara, A. R. da Costa, and A. N. Morse. 2021. Analysis of microstructural properties of ultrafiltration cake layer during its early stage formation and growth. Journal of Membrane Science 620 (July 2020):118903. doi:10.1016/j.memsci.2020.118903.
  • Parn-anurak, S., and T. W. Engler. 2005. Modeling of fluid filtration and near-wellbore damage along a horizontal well. Journal of Petroleum Science and Engineering 46 (3):149–60. doi:10.1016/J.PETROL.2004.12.003.
  • Picabea, J., M. Maestri, M. Cassanello, G. Salierno, C. de Blasio, M. A. Cardona, D. Hojman, and H. Somacal. 2022. Validation of CFD-DEM simulation of a liquid–solid fluidized bed by dynamic analysis of time series. Particuology 68:75–87. doi:10.1016/j.partic.2021.11.003.
  • Puderbach, V., K. Schmidt, and S. Antonyuk. 2021. A coupled CFD-DEM model for resolved simulation of filter cake formation during solid-liquid separation. Processes 9 (5):826. doi:10.3390/pr9050826.
  • Puhan, P., A. Awasthi, A. K. Mukherjee, and A. Atta. 2021. CFD modeling of segregation in binary solid-liquid fluidized beds: Influence of liquid viscosity and density. Chemical Engineering Science 246:116965. doi:10.1016/j.ces.2021.116965.
  • Rabbani, A., S. Ayatollahi, R. Kharrat, and N. Dashti. 2016. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image. Advances in Water Resources 94:264–77. doi:10.1016/j.advwatres.2016.05.020.
  • Rabbani, A., and S. Salehi. 2017. Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. Journal of Natural Gas Science and Engineering 42:157–68. doi:10.1016/j.jngse.2017.02.047.
  • Ramadan, A. M., Shehadeh, M. F., Shehata, A. I., Mehanna, A. 2021. Filter Cake Formation on Deep Vertical Well Under High Pressure and Temperature Conditions Computational Fluid Dynamics Modeling and Simulations 16 (Research India Publications) . April.
  • Salehi, S., A. Ghalambor, F. K. Saleh, H. Jabbari, and S. Hussmann (2015). Study of filtrate and mud cake characterization in HPHT: Implications for formation damage control. SPE - European Formation Damage Conference, Proceedings, EFDC, 2015-Janua Budapest, Hungary, 1241–49. 10.2118/174273-ms
  • Salehi, S., S. A. Madani, and R. Kiran. 2016. Characterization of drilling fluids filtration through integrated laboratory experiments and CFD modeling. Journal of Natural Gas Science and Engineering 29:462–68. doi:10.1016/j.jngse.2016.01.017.
  • Sauki, A., P. N. F. M. Khamaruddin, S. Irawan, I. Kinif, and S. Ridha. 2020. Statistical relationship of drilled solid concentration on drilling mud rheology. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 69 (1):122–36. doi:10.37934/ARFMTS.69.1.122136.
  • Shafian, S. R. M., N. Razali, S. Irawan, A. F. Jahari, I. K. Salleh, and J. M. M. Ibrahim. 2020. Controlling fines migration by enhancing fines attachment using nanosilica. International Journal of Advanced Science and Technology 29 (1):318–31.
  • Shafian, S. R. M., I. M. Saaid, N. Razali, I. K. Salleh, and S. Irawan. 2021. Experimental investigation of colloidal silica nanoparticles (C-SNPs) for fines migration control application. Applied Nanoscience (Switzerland) 11 (7):1993–2008. doi:10.1007/S13204-021-01894-5.
  • Shaughnessy, C. M., and W. E. Kline. 1983. EDTA removes formation damage at Prudhoe Bay. Journal of Petroleum Technology 35 (10):1783–91. doi:10.2118/11188-PA.
  • Shojaei, N., and M. H. Ghazanfari. 2022. Reduction of formation damage in horizontal wellbores by application of nano-enhanced drilling fluids: Experimental and modeling study. Journal of Petroleum Science and Engineering 210 (December 2021):110075. doi:10.1016/j.petrol.2021.110075.
  • Siddig, O., A. A. Mahmoud, and S. Elkatatny. 2020. A review of different approaches for water-based drilling fluid filter cake removal. Journal of Petroleum Science and Engineering 192 (December 2019):107346. doi:10.1016/j.petrol.2020.107346.
  • Sören, S., and T. Jürgen. 2012. Simulation of a Filtration Process by DEM and CFD. International Journal of Mechanical Engineering and Mechatronics 1 (1). doi: 10.11159/ijmem.2012.004.
  • Tariq, Z., M. S. Kamal, M. Mahmoud, O. Alade, and A. Al-Nakhli. 2021. Self-destructive barite filter cake in water-based and oil-based drilling fluids. Journal of Petroleum Science and Engineering 197 (June 2020):107963. doi:10.1016/j.petrol.2020.107963.
  • Tran, M. H., Y. N. Abousleiman, and V. X. Nguyen (2010). The effects of low-permeability mudcake on time-dependent wellbore failure analyses. Society of Petroleum Engineers - IADC/SPE Asia Pacific Drilling Technology Conference Ho Chi Minh City, Vietnam 2010, 499–513. 10.2118/135893-ms
  • Wakeman, R. 2007. The influence of particle properties on filtration. Separation and Purification Technology 58 (2):234–41. doi:10.1016/J.SEPPUR.2007.03.018.
  • Wayo, D. D. K. (2022). Primary evaluation of filter cake breaker in biodegradable synthetic-based drill-in-fluid (Issue April). MSc Thesis, Nazarbayev University. http://nur.nu.edu.kz/handle/123456789/6132
  • Yao, R., G. Jiang, W. Li, T. Deng, and H. Zhang. 2014. Effect of water-based drilling fluid components on filter cake structure. Powder Technology 262:51–61. doi:10.1016/J.POWTEC.2014.04.060.
  • Zhang, Z., T. Yin, X. Huang, and D. Dias. 2019. Slurry filtration process and filter cake formation during shield tunnelling: Insight from coupled CFD-DEM simulations of slurry filtration column test. Tunnelling and Underground Space Technology 87 (February):64–77. doi:10.1016/j.tust.2019.02.001.
  • Zitoun, K. B., S. K. Sastry, and Y. Guezennec. 2001. Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid-liquid flow using particle tracking velocimetry. International Journal of Multiphase Flow 27 (8):1397–414. doi:10.1016/S0301-9322(01)00011-8.