433
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Emulating Heterogeneity of Individuals and Visualizing Its Influence on Ant Swarm Migration

ORCID Icon
Article: 2138120 | Received 14 Aug 2022, Accepted 13 Oct 2022, Published online: 10 Nov 2022

References

  • Aguilar, J., Monaenkova, D., Linevich, V., Savoie, W., Dutta, B., Kuan H. S., Betterton M D., Goodisman, M. A. D., & Goldman, D I. 2018. Collective clog control: Optimizing traffic flow in confined biological and robophysical excavation. Science 361 (6403):672–3447. doi:10.1126/science.aan3891.
  • Aina, K. O, Avinery, R., Kuan H. S., Betterton, M. D., Goodisman, M. A. D. & Goldman, D. I. 2022. Capable active matter: Learning to avoid clogging in confined collectives via collisions. Frontiers in Physics 10:735667. doi:10.3389/fphy.2022.735667.
  • Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. 2001. Self-organization in biological systems. Princeton, NJ: Princeton Univ. Press.
  • Charbonneau, D., Sasaki, T., & Dornhaus, A. 2017. Who needs ‘lazy’ workers? Inactive workers act as a ‘reserve’ labor force replacing active workers, but inactive workers are not replaced when they are removed. Public Library of Science (PLoS) 12 (9):0184074. doi:10.1371/journal.pone.0184074.
  • Chowdhury, D., Guttal, V., Nishinari, K., & Schadschneider, A. 2002. A cellular-automata model of flow in ant trails: Non-monotonic variation of speed with density. Journal of Physics A: Mathematical and Theoretical 35 (41):573–77. doi:10.1088/0305-4470/35/41/103.
  • Cleghorn, C. W., & Engelbrecht, A. P. 2018. Particle swarm stability: A theoretical extension using the non-stagnate distribution assumption. Swarm Intelligence 12 (1):1–22. doi:10.1007/s11721-017-0141-x.
  • Clerc, M., & Kennedy, J. 2002. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (1):58–73. doi:10.1109/4235.985692.
  • Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al. 2013. Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20 (4):60–71. doi:10.1109/MRA.2013.2252996.
  • Dorigo, M., Theraulaz, G., & Trianni, V. 2021. Swarm robotics: Past, present, and future. Proceedings of the IEEE 109 (7):1152–65. doi:10.1109/JPROC.2021.3072740.
  • Dornhaus, A., Holley, J. A., & Franks, N. R. 2009. Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behavioral Ecology 20 (5):922–29. doi:10.1093/beheco/arp070.
  • Dornhaus, A., Holley, J. A., Pook, V. G., Worswick, G., & Franks, N. R. 2008. Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behavioral Ecology and Sociobiology 63 (1):43–51. doi:10.1007/s00265-008-0634-0.
  • Garnier, S., Jost, C., Gautrais, J., Asadpoury, M., Caprari, G., Jeanson, R., Grimal A., & Theraulaz, G. 2008. The embodiment of cockroach aggregation behavior in a group of micro-robots. Artificial Life 14 (4):387–408. doi:10.1162/artl.2008.14.4.14400.
  • Geraghty, M. J., Dunn, R. R., & Sanders, N. J. 2007. Body size, colony size, and range size in ants (Hymenoptera: Formicidae): Are patterns along elevational and latitudinal gradients consistent with Bergmann’s rule? Myrmecological News 10:51–58.
  • Gravish, N., Garcia, M., Mazouchova, N., Levy, L., Umbanhowar, P. B., Goodisman, M. A. D., & Goldman, D. I. 2012. Effects of worker size on the dynamics of fire ant tunnel construction. Journal of the Royal Society Interface 9 (77):3312–22. doi:10.1098/rsif.2012.0423.
  • Gravish, N., Gold, G., Zangwill, A., Goodisman, M. A. D., & Goldman, D. I. 2015. Glass-like dynamics in confined and congested ant traffic. Soft Matter 11 (33):6552–61. doi:10.1039/c5sm00693g.
  • John, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. 2008. Characteristics of ant-inspired traffic flow: Applying the social insect metaphor to traffic models. Swarm Intelligence 2 (1):25–41. doi:10.1007/s11721-008-0010-8.
  • John, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. 2009. Traffic like collective movement of ants on trails: Absence of jammed phase. Physical Review Letters 102 (10):108001. doi:10.1103/PhysRevLett.102.108001.
  • Kennedy, J. 2003. Bare bones particle swarms. In Proceedings of the 2003 IEEE International Symposium on Swarm Intelligence, 80–87. IEEE Press, Piscataway, NJ. doi:10.1109/SIS.2003.1202251.
  • Kennedy, J., & Eberhart, R. 1995. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, 1942–48. IEEE Press, Piscataway, NJ. doi:10.1109/ICNN.1995.488968.
  • Linevich V., Monaenkova, D., & Goldman, D. I. 2016. Robophysical study of excavation in confined environments. Artificial Life and Robotics 21 (4):460–65. doi:10.1007/s10015-016-0317-2.
  • Li, X., Tang, K., Omidvar, M. N., Yang, Z., & Qin, K. 2013. Technical report: Benchmark functions for the CEC’2013 special session and competition on large scale global optimization. Melbourne, Australia: Evolutionary computation and machine learning group, RMIT University. https://titan.csit.rmit.edu.au/e46507/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf.
  • Miranda, L. J. V. 2019. PySwarms a research toolkit for Particle Swarm Optimization in Python. https://pyswarms.readthedocs.io/en/latest/.
  • Monaenkova, D., Gravish, N., Rodriguez, G., Kutner, R., Goodisman, M. A. D., & Goldman, D. I. 2015. Behavioral and mechanical determinants of collective subsurface nest excavation. The Journal of Experimental Biology 218 (9):1295–305. doi:10.1242/jeb.113795.
  • Ouellette, N. T., & Gordon, D. M. 2021. Goals and limitations of modeling collective behavior in biological systems. Frontiers in Physics 9:687823. doi:10.3389/fphy.2021.687823.
  • Pereira, G. 2010. Particle swarm optimization in artificial life by example. http://web.ist.utl.pt/gdgp/VA/pso.htm.
  • Pratt, S. C. 2005. Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insectes Sociaux 52 (4):383–92. doi:10.1007/s00040-005-0823-z.
  • Rauf, H. T., Bangyal, W. H. K., & Lali, M. I. 2021. An adaptive hybrid differential evolution algorithm for continuous optimization and classification problems. Neural Computing & Applications 33 (17):10841–67. doi:10.1007/s00521-021-06216-y.
  • Rauf, H. T., Malik, S., Shoaib, U., Irfan, M. N., & Lali, M. I. 2020. Adaptive inertia weight Bat algorithm with Sugeno-function fuzzy search. Applied Soft Computing 90:106159. doi:10.1016/j.asoc.2020.106159.
  • Sasaki, H. 2019a. Modeling ant nest relocation at low active ratio by particle swarm optimization. In Proceedings of the 21st IEEE Congress on Evolutionary Computation, 594–603. IEEE Press, Piscataway, NJ. doi:10.1109/CEC.2019.8789942.
  • Sasaki, H. (2019b). Modeling fast and robust ant nest relocation using particle swarm optimization. In Proceedings of the 2019 Conference on Artificial Life, 626–33. The MIT Press, Cambridge, MA. doi:10.1162/isal_a_00231.
  • Sasaki, H., & Leung, H. 2013. Trail traffic flow prediction by contact frequency among individual ants. Swarm Intelligence 7 (4):307–26. doi:10.1007/s11721-013-0085-8.
  • Yarpiz Team. 2015. Particle swarm optimization in MATLAB. In Yarpiz - Academic Source Codes and Tutorials. http://yarpiz.com/50/ypea102-particle-swarm-optimization