2,384
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Machine learning based groundwater prediction in a data-scarce basin of Ghana

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Article: 2138130 | Received 09 May 2022, Accepted 13 Oct 2022, Published online: 30 Oct 2022

References

  • Abba, S. I., G. Elkiran, and V. Nourani. 2021. Improving novel extreme learning machine using Pca algorithms for multi-parametric modeling of the municipal wastewater treatment plant. Desalination and Water Treatment 215 (October 2019):414–30. doi:10.5004/dwt.2021.26903.
  • Abba, S. I., N. Thi Thuy Linh, J. Abdullahi, S. Ismael Albrka Ali, Q. Bao Pham, R. Aliyu Abdulkadir, R. Costache, V. Thai Nam, and D. Tran Anh. 2020. Hybrid machine learning ensemble techniques for modeling dissolved oxygen concentration. IEEE Access 8:157218–37. doi:10.1109/ACCESS.2020.3017743.
  • Abdullahi, M. G., M. K. A. Kamarudin, N. A. Wahab, R. Umar, N. A. F. Nik Wan, H. Juahir, M. B. Gasim, Wahab, N. A. 2018. Assessment of natural groundwater recharge in Tudun wada assessment of natural groundwater recharge in tudun wada local government kano state, Nigeria local government Kano state, Nigeria. Journal of Fundamental and Applied Sciences 4 (1):9–10. doi:10.4314/jfas.v10i1s.7.
  • Acheampong, S. Y., and J. W. Hess. 2000. Origin of the shallow groundwater system in the southern voltaian sedimentary basin of Ghana: An isotopic approach. Journal of Hydrology 233 (1–4):37–53. doi:10.1016/S0022-1694(00)00221-3.
  • Adamowski, J., and K. Sun. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology 390 (1–2):85–91. doi:10.1016/j.jhydrol.2010.06.033.
  • Adeleke, O. O., V. Makinde, A. O. Eruola, O. F. Dada, A. O. Ojo, and T. J. Aluko. 2015. Estimation of groundwater recharges using empirical formulae in odeda local government area, 271–81. Nigeria: Ogun State. doi:10.3390/challe6020271.
  • Ahmadi, A., M. Olyaei, Z. Heydari, M. Emami, A. Zeynolabedin, A. Ghomlaghi, A. Daccache, G. E. Fogg, and M. Sadegh. 2022. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water (Switzerland) 14 (6):1–22. doi:10.3390/w14060949.
  • Ako, B. D. 1979. Geophysical prospecting for groundwater in parts of South-Western Nigeria. Unpublished PhD Thesis., Department of Geology, University of Ife, Ile-Ife, Nigeria, 371.
  • Akurugu, B. A., L. Pax Chegbeleh, and S. Mark Yidana. 2019. Characterisation of groundwater flow and recharge in crystalline basement rocks in the Talensi district, Northern Ghana. Journal of African Earth Sciences 161:103665. doi:10.1016/j.jafrearsci.2019.103665.
  • Alfa, B., B. Hasholt, N. O. Jørgensen, and B. Banoeng-Yakubo. 2011. Rainfall and water resources of a coastal basin of Ghana. Journal of Hydrologic Engineering 16 (4):316–23. doi:10.1061/(ASCE)HE.1943-5584.0000314.
  • Amoako-Tuffour, J., and H. A. Sackey. 2008. Informal sector activities and urban poverty in Ghana: Patterns and poverty policy options. Poverty Reduction Strategies in Action: Perspectives and Lessons from Ghana 243.
  • Anayah, F. M., J. J. Kaluarachchi, and P. Pavelic. 2013a. Predicting groundwater recharge in Ghana by estimating evapotranspiration. October 2014 37–41. doi:10.1080/02508060.2013.821642.
  • Anayah, F. M., J. J. Kaluarachchi, P. Pavelic, and V. Smakhtin. 2013b. Predicting groundwater recharge in Ghana by estimating evapotranspiration. Water International 38 (4):408–32. doi:10.1080/02508060.2013.821642.
  • Andreini, M., N. van de Giesen, A. van Edig, M. Fosu, and W. Andah. 2000. Volta basin water balance Zentrum für Entwicklungsforschung (ZEF) Center for Development Research Walter-Flex-Strasse 3 D – 53113 Bonn Germany 21 21 https://www.econstor.eu/bitstream/10419/84715/1/zef_dp21.pdf .
  • Barros, V. R., and C. B. Field. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Cambridge, CB2 8EA: Cambridge University Press pp. 1–1820 9781107415386 https://www.cambridge.org/core/books/climate-change-2014-impacts-adaptation-and-vulnerability-part-b-regional-aspects/036A899BD52861D61B0D519C5F2B9334 doi:https://doi.org/10.1017/CBO9781107415386 .
  • Barry, B., E. Obuobie, M. Andreini, W. Andah, and M. Pluquet Rapport, IWMI, CAWMA . 2005. The Volta River basin: Comprehensive Assessment of Water Management in Agriculture Comparative study on river basin development and management. IWMI, CAWMA 1 1–187.
  • Bartram, J., and S. Cairncross. 2010. Hygiene, sanitation, and water: Forgotten foundations of health. PLoS Medicine 7 (11):1–10. doi:10.1371/journal.pmed.1000367.
  • Bengtsson, L. Singh , Vijay P., Singh, Pratap, Haritashya, Umesh K. 2011. Direct surface runoff Encyclopedia of Snow, Ice and Glaciers Part 4 232- 234 doi:10.1007/978-90-481-2642-2_114 .
  • Bera, A., B. Prasad Mukhopadhyay, P. Chowdhury, A. Ghosh, and S. Biswas. 2021. Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River basin, India with special emphasis on agricultural contamination. Ecotoxicology and Environmental Safety 214:112085. doi:10.1016/j.ecoenv.2021.112085.
  • Carrier, M.-A., R. Lefebvre, J. Racicot, and E. B. Asare. 2008. Groundwater recharge assessment in Northern Ghana using soil moisture balance and chloride mass balance. GeoEmonton 08:1437–44.
  • Crone, S. F., and N. Kourentzes. 2010. Feature selection for time series prediction - a combined filter and wrapper approach for neural networks. Neurocomputing 73 (10–12):1923–36. doi:10.1016/j.neucom.2010.01.017.
  • Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309 (1–4):229–40. doi:10.1016/j.jhydrol.2004.12.001.
  • Epoch Definition | DeepAI.”|“Epoch Definition | DeepAI. n.d. Accessed March 2, 2021. https://deepai.org/machine-learning-glossary-and-terms/epoch
  • Fabio, D. N., S. I. Abba, B. Quoc Pham, A. R. M. Towfiqul Islam, S. Talukdar, and G. Francesco. 2022. Groundwater level forecasting in Northern Bangladesh using nonlinear autoregressive exogenous (NARX) and extreme learning machine (ELM) neural networks. Arabian Journal of Geosciences 15 (7):7. doi:10.1007/s12517-022-09906-6.
  • Feng, Z. K., W. J. Niu, and S. Liu. 2021. Cooperation search algorithm : A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems. Applied Soft Computing Journal 98:106734. doi:10.1016/j.asoc.2020.106734.
  • Flore, M., S. Janicot, and G. N. Kiladis. 2008. The West African monsoon dynamics. Part III: The quasi-biweekly zonal dipole. Journal of Climate 21 (9):1911–28. doi:10.1175/2007JCLI1706.1.
  • Forkuor, G., P. Pavelic, E. Asare, and E. Obuobie. 2013. Modélisation des zones potentielles déexploitation des eaux souterraines pour léagriculture Au Ghana septentrional En utilisant Le SIG/RS. Hydrological Sciences Journal 58 (2):437–51. doi:10.1080/02626667.2012.754101.
  • Friesen, J., M. Andreini, W. Andah, B. Aminsigo, and N. Van De Giesen. 2005. Storage capacity and long-term water balance of the volta basin, West Africa. IAHS-AISH publication 296 138–145 .
  • Funk, C. C., and M. E. Brown. 2009. Declining global per capita agricultural production and warming oceans threaten food security. Food Security 1 (3):271–89. doi:10.1007/s12571-009-0026-y.
  • Gaffoor, Z., A. Gritzman, K. Pietersen, N. Jovanovic, A. Bagula, and T. Kanyerere. 2022. An Autoregressive machine learning approach to forecast high-resolution groundwater-level anomalies in the Ramotswa/North West/Gauteng dolomite aquifers of Southern Africa. Hydrogeology Journal 30 (2):575–600. doi:10.1007/s10040-021-02439-4.
  • Gibson, K. 2020. The application of machine learning for groundwater level prediction in the steenkoppies compartment of the Gauteng and North West dolomite aquifer, South Africa (University of the Free State)http://hdl.handle.net/11660/11231 . :.
  • GSS. 2010. Population and housing census: Summary report of final results. Ghana: Ghana Statistical Service Accra.
  • Gumma, M. K., and P. Pavelic. 2013. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environmental Monitoring and Assessment 185 (4):3561–79. doi:10.1007/s10661-012-2810-y.
  • Guzman, S. M., J. O. Paz, M. Love M Tagert, and A. Mercer. 2015. Artificial neural networks and support vector machines. Contrast Study for Groundwater Level Written for Presentation at the 2015 ASABE Annual International Meeting Sponsored by ASABE, New Orleans, Louisiana, 0–10.
  • Gyau-Boakye, P. 2001. Environmental impacts of the akosombo dam and effects of climate change on the lake levels. Environment, Development and Sustainability 3 (1):17–29. doi:10.1023/A:1011402116047.
  • Hadi, S. J., S. I. Abba, S. S. H. Sammen, S. Q. Salih, N. Al-Ansari, and Z. Mundher Yaseen. 2019. Non-linear input variable selection approach integrated with non-tuned data intelligence model for streamflow pattern simulation. IEEE Access 7:141533–48. doi:10.1109/ACCESS.2019.2943515.
  • Hargreaves, G. H., and Z. A. Samani. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1 (2):96–99.
  • Harter, T., and L. G. Walker. 2001. Assessing vulnerability of groundwater, vol. 3. California: University of California 978-1-879906-81-5 .
  • Huang, X., L. Gao, R. S. Crosbie, N. Zhang, G. Fu, and R. Doble. 2019. Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning. Water (Switzerland) 11 (9):9. doi:10.3390/w11091879.
  • Huang, G. B., Q. Yu Zhu, and C. Kheong Siew. 2006. Extreme learning machine: Theory and applications. Neurocomputing 70 (1–3):489–501. doi:10.1016/j.neucom.2005.12.126.
  • Ibrahimi, A. E., and A. Baali. 2017. Application of neural modeling and the SPI index for the prediction of weather drought in the saïss plain (Northern Morocco). International Journal of Intelligent Engineering and Systems 10 (5):5. doi:10.22266/ijies2017.1031.01.
  • Ibrahimi, A. E., A. Baali, A. Couscous, T. El Kamel, and N. Hamdani. 2017. Comparative study of the three models (ANN-PMC), (DWT-ANN-PMC) and (MLR) for prediction of the groundwater level of the surface water table in the saïss plain (North of Morocco). International Journal of Intelligent Engineering and Systems 10 (5):220–30. doi:10.22266/ijies2017.1031.24.
  • Kabo-Bah, A. T., C. J. Diji, K. Nokoe, Y. Mulugetta, D. Obeng-Ofori, and K. Akpoti. 2016. Multiyear rainfall and temperature trends in the volta river basin and their potential impact on hydropower generation in Ghana. Climate 4 (4):49. doi:10.3390/cli4040049.
  • Kadyampakeni, Davie M., Mul, Marloes L., Obuobie, Emmanuel, Appoh, Richard, Owusu, A., B. Ghansah, E. Boakye-Acheampong, and J. Barron. 2017. Agro-climatic and hydrological characterization of selected watersheds in Northern Ghana International Water Management Institute IWMI Working Paper 173 doi:10.5337/2017.209 .
  • Kanyama, Y., R. Ajoodha, H. Seyler, N. Makondo, and H. Tutu. 2020. Application of machine learning techniques in forecasting groundwater levels in the grootfontein aquifer. 2nd International Multidisciplinary Information Technology and Engineering Conference, IMITEC. doi:10.1109/IMITEC50163.2020.9334142.
  • Kardan, M., S. G. M. Hamid, Z. Kayhomayoon, Z. Rahimzadeh Kivi, and N. Arya Azar. 2021. The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment 193 (4):1–20. doi:10.1007/s10661-021-08961-y.
  • Kayhomayoon, Z., A. Azar Naser, S. Ghordoyee Milan, K. Moghaddam Hamid, and B. Ronny. 2021. Novel approach for predicting groundwater storage loss using machine learning. Journal of Environmental Management 296 (July):113237. doi:10.1016/j.jenvman.2021.113237.
  • Kayhomayoon, Z., S. Ghordoyee Milan, N. Arya Azar, and H. Kardan Moghaddam. 2021. A new approach for regional groundwater level simulation: Clustering, simulation, and optimization. Natural Resources Research 30 (6):4165–85. doi:10.1007/s11053-021-09913-6.
  • Kochhar, A., H. Singh, S. Sashikant, P. K. Litoria, and B. Pateriya. 2021. Prediction and forecast of pre-monsoon and post-monsoon groundwater level: Using deep learning and statistical modelling. Modeling Earth Systems and Environment 8 (2):0123456789. doi:10.1007/s40808-021-01235-z.
  • Konikow, L. F., and E. Kendy. 2005. Groundwater depletion: A global problem. Hydrogeology Journal 13 (1):317–20. doi:10.1007/s10040-004-0411-8.
  • Kortatsi, B. K. 1994. Groundwater utilization in Ghana IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences . 222:149–56.
  • Kourentzes, N. 2019. Tsutils: Time series exploration, modelling and forecasting. R Package 20 03 2022 https://kourentzes.com/forecasting/tag/time-series-exploration/ Version 0.9. 0.
  • Kourentzes, N., D. K. Barrow, and S. F. Crone. 2014. Neural network ensemble operators for time series forecasting. Expert Systems with Applications 41 (9):4235–44. doi:10.1016/j.eswa.2013.12.011.
  • Kumar, C. P. 2011. Groundwater data requirement and analysis. Angelfire Com 247667:27. https://www.academia.edu/384575/Groundwater_Data_Requirement_and_Analysis.
  • Kumar, C. P., and P. V. Seethapathi. 2002. Assessment of natural ground water recharge in upper ganga canal command area. Journal of Applied Hydrology, Association of Hydrologists of India XV (4):13–20. http://www.angelfire.com/nh/cpkumar/publication/ugcm.pdf.
  • Lallahem, S., J. Mania, A. Hani, and Y. Najjar. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology 307 (1–4):92–111. doi:10.1016/j.jhydrol.2004.10.005.
  • Lloyd, J. W. 1999 (Paris: Unesco Pub.) 284 p 92310351189231035118 https://digitallibrary.un.org/record/1489036 . .
  • Lopez‐gunn, E., and M. Ramón Llamas. 2008. In Natural resources forum, vol. 32, 228–38 https://onlinelibrary.wiley.com/doi/10.1111/j.1477-8947.2008.00200.x doi:10.1111/j.1477-8947.2008.00200.x . : .
  • Lutz, A., S. Minyila, B. Saga, and S. Diarra. 2015. Fluctuation of groundwater levels and recharge patterns in Northern Ghana. Climate 3 (1):1–15. doi:10.3390/cli3010001.
  • MacCartney, M., and V. Smakhtin. 2010. Water storage in an era of climate change: Addressing the challenge of increasing rainfall variability. 14. doi:10.22004/ag.econ.212430.
  • MacDonald, A. M., H. C. Bonsor, B. É. Ó. Dochartaigh, and R. G. Taylor. 2012. Quantitative maps of groundwater resources in Africa. Environmental Research Letters 7 (2):2. doi:10.1088/1748-9326/7/2/024009.
  • Maier, H. R., and G. C. Dandy. 1996. Of water quality parameters dendrites. Water Resources Research 32 (4):1013–22.
  • Mark, S., Y. Evans, K. Vakpo, P. Asamoah, S. Larry, P. Chegbeleh, and T. M. Akabzaa. 2019. Groundwater – lakewater interactions : An evaluation of the impacts of climate change and increased abstractions on groundwater contribution to the volta lake, Ghana. Environmental Earth Sciences 0 (0):0. doi:10.1007/s12665-019-8076-8.
  • Martin, N. 2006. Development of a water balance for the atankwidi catchment, West Africa-A case study of groundwater recharge in a semi-arid climate. Nonnenstieg: Cuvillier Verlag 184 3865378854 .
  • Masson-Delmotte, V., P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, and R. Pidcock. 2018. Global warming of 1.5 OC: An IPCC special report on the impacts of global warming of 1.5 degrees C above pre-industrial levels and related global greenhouse gas emission pathways Masson-Delmotte, V., Zhai, P., Pörtner , H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. In The context of strengthening the global response to the threat of climat. Sustainable development, and efforts to eradicate poverty, Cambridge: Cambridge University Press pp. 93–174 doi:https://doi.org/10.1017/9781009157940.004 .
  • Milan, S. G., A. Roozbahani, and M. Ebrahim Banihabib. 2018. Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. Journal of Hydrology 566:421–34. doi:10.1016/j.jhydrol.2018.08.078.
  • Mirarabi, A., H. R. Nassery, M. Nakhaei, J. Adamowski, A. H. Akbarzadeh, and F. Alijani. 2019. Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences 78 (15):15. doi:10.1007/s12665-019-8474-y.
  • Moghaddam, H. K., H. Kardan Moghaddam, Z. Rahimzadeh Kivi, M. Bahreinimotlagh, and M. Javad Alizadeh. 2019. Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development 9 (May):100237. doi:10.1016/j.gsd.2019.100237.
  • Mohanty, S., M. K. Jha, A. Kumar, and K. P. Sudheer. 2010. Artificial neural network modeling for groundwater level forecasting in a river Island of Eastern India. Water Resources Management 24 (9):1845–65. doi:10.1007/s11269-009-9527-x.
  • Moseki, 2017. Climate change impacts on groundwater : Literature review Environmental Risk Assessment and Remediation . 2(1 16–20 doi:10.4066/2529-8046.100033).
  • Mozaffari, S., S. Javadi, H. Kardan Moghaddam, and T. O. Randhir. 2022. Forecasting groundwater levels using a hybrid of support vector regression and particle swarm optimization. Water Resources Management 36 (6):1955–72. doi:10.1007/s11269-022-03118-z.
  • Nash, J. E., and J. V. Sutcliffe. 1970. Ireland’s water budget - model validation and a greenhouse experiment. Journal of Hydrology 34 (2):124–34. doi:10.1080/00750770109555783.
  • Nguyen, P. T., D. Hai Ha, M. Avand, A. Jaafari, H. Duy Nguyen, N. Al-Ansari, T. Van Phong, R. Sharma, R. Kumar, H. V. Le, et al. 2020. Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences (Switzerland) 10 (7):7. doi:10.3390/app10072469.
  • Niu, W. J., and Z. K. Feng. 2021. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustainable Cities and Society 64 (October 2020):102562. doi:10.1016/j.scs.2020.102562.
  • Nonterah, C., Y. Xu, and S. Osae. 2019. Groundwater occurrence in the sakumo wetland catchment, Ghana : Model – setting – scenario approach. Hydrogeology Journal 27 (3):983–96. doi:10.1007/s10040-019-01959-4.
  • Nunno, F. D., and F. Granata. 2020. Groundwater level prediction in apulia region (Southern Italy) using NARX neural network. Environmental Research 190 (April):110062. doi:10.1016/j.envres.2020.110062.
  • Nyagwambo, N. L. 2006. Groundwater Recharge Estimation And Water Resources Assessment In A Tropical Crystalline Basement Aquifer (Leiden, Balkema)http://resolver.tudelft.nl/uuid:626367cd-b816-4bf1-b6e7-288e2391787a .
  • Obuobie, E. 2008a. Estimation of groundwater recharge in the context of future climate change in the white volta river basin, West Africa. https://nbn-resolving.org/urn:nbn:de:hbz:5N-16169
  • Obuobie, E. 2008b. Estimation of groundwater recharge in the context of future climate change in the white volta river basin, West Africa. Ecology and Development Series 62:168.
  • O’Driscoll, M., S. Clinton, A. Jefferson, A. Manda, and S. McMillan. 2010. Urbanization effects on watershed hydrology and in-stream processes in the Southern United States. Water (Switzerland) 2 (3):605–48. doi:10.3390/w2030605.
  • Oke, M., O. Martins, O. Idowu, and O. Aiyelokun. 2013. Comparative analysis of empirical formulae used in groundwater recharge in ogun – oshun river basins. Journal of Scientific Research and Reports 2 (2):692–710. doi:10.9734/jsrr/2013/4557.
  • Osei, M. A., L. Ko, D. Dotse Wemegah, K. Preko, E. Serwaa Gyawu, and K. Obiri-Danso. 2019. Journal of hydrology : Regional studies the impact of climate and land-use changes on the hydrological processes of owabi catchment from SWAT analysis. Journal of Hydrology: Regional Studies 25 (December 2018):100620. doi:10.1016/j.ejrh.2019.100620.
  • Pandey, K., S. Kumar, A. Malik, and A. Kuriqi. 2020. Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India. Sustainability (Switzerland) 12 (21):1–24. doi:10.3390/su12218932.
  • Pham, B. T., A. Jaafari, I. Prakash, S. K. Singh, N. K. Kim Quoc, and D. T. Tien Bui. 2019. Hybrid computational intelligence models for groundwater potential mapping. Catena 182 (May):104101. doi:10.1016/j.catena.2019.104101.
  • Pham, Q. B., M. Kumar, F. Di Nunno, A. Elbeltagi, F. Granata, A. Reza Md Towfiqul Islam, S. T. X. Cuong Nguyen, A. Najah Ahmed, and D. Tran Anh. 2022. Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing & Applications 34 (13):10751–73. doi:10.1007/s00521-022-07009-7.
  • Qu, J., J. Zhou, and N. Chen. 2010. Groundwater table prediction based on improved PSO algorithm and RBF neural network. Proceedings - International Conference on Artificial Intelligence and Computational Intelligence, AICI 2010, 1: 228–32. doi:10.1109/AICI.2010.55.
  • Rodríguez-Huerta, E., M. Rosas-Casals, and L. M. Margarita Hernández-Terrones. 2020. A water balance model to estimate climate change impact on groundwater recharge in Yucatan peninsula, Mexico. Hydrological Sciences Journal 65 (3):470–86. doi:10.1080/02626667.2019.1702989.
  • Saghravani, S. R., I. Yusoff, S. Mustaustapha, and S. Fazlollah Saghravani. 2013. Estimating groundwater recharge using empirical method: A case study in the tropical zone. Sains Malaysiana 42 (5):553–60.
  • Sahoo, G. B., C. Ray, and H. F. Wade. 2005. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecological Modelling 183 (1):29–46. doi:10.1016/j.ecolmodel.2004.07.021.
  • Scanlon, B. R., R. W. Healy, and P. G. Cook. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10 (1):18–39. doi:10.1007/s10040-001-0176-2.
  • Schneider, K., U. Leopold, F. Gerschlauer, F. Barthold, M. Giese, M. Steffens, C. Hoffmann, H. G. Georg Frede, and L. Breuer. 2011. Spatial and temporal variation of soil moisture in dependence of multiple environmental parameters in semi-arid grasslands. Plant and Soil 340 (1–2):73–88. doi:10.1007/s11104-010-0692-8.
  • Şen, Z. 2015. Applied drought modeling, prediction, and mitigation. Jeddah, Kingdom of Saudi Arabia: Elsevier Inc. doi:10.1016/C2014-0-01944-2.
  • Sena, Y., A. Loh, B. Awinbire Akurugu, E. Manu, and A. Abdul-Samed. 2019. Assessment of groundwater quality and the main controls on its hydrochemistry in some voltaian and basement aquifers, Northern Ghana. Groundwater for Sustainable Development 10:100296. doi:10.1016/j.gsd.2019.100296.
  • Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, Marengo J, McInnes K, Rahimi M, Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., et al. 2012. Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change 9781107025:109–230. doi:10.1017/CBO9781139177245.006.
  • Sethi, R. R., A. Kumar, S. P. Sharma, and H. C. Verma. 2010. Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environmental Engineering 4 (2):95–102. doi:10.5897/IJWREE.9000045.
  • Shah, T., M. Giordano, and A. Mukherji. 2012. Political economy of the energy-groundwater nexus in India: Exploring issues and assessing policy options. Hydrogeology Journal 20 (5):995–1006. doi:10.1007/s10040-011-0816-0.
  • Sheng, Z. 2005. An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. Journal of Environmental Management 75 (4):367–77. doi:10.1016/j.jenvman.2004.10.007.
  • Shrestha, S., N. A. T. Hoang, P. Kumar Shrestha, and B. Bhatta. 2018. Climate change impact on groundwater recharge and suggested adaptation strategies for selected Asian Cities. APN Science Bulletin 8 (1). doi:10.30852/sb.2018.499.
  • Siabi, E. K., A. T. Kabobah, K. Akpoti, G. K. Anornu, M. Amo-Boateng, and E. K. Nyantakyi. 2021. Statistical downscaling of global circulation models to assess future climate changes in the black volta basin of Ghana. Environmental Challenges 5 (September):100299. doi:10.1016/j.envc.2021.100299.
  • Siebert, S., J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann. 2010. Groundwater use for irrigation - a global inventory. Hydrology and Earth System Sciences 14 (10):1863–80. doi:10.5194/hess-14-1863-2010.
  • Sood, A., L. Muthuwatta, and M. McCartney. 2013. A SWAT evaluation of the effect of climate change on the hydrology of the volta river basin. Water International 38 (3):297–311. doi:10.1080/02508060.2013.792404.
  • Sun, Y., D. Wendi, D. Eon Kim, and S. Yui Liong. 2016. Technical note: Application of artificial neural networks in groundwater table forecasting-a case study in a Singapore swamp forest. Hydrology and Earth System Sciences 20 (4):1405–12. doi:10.5194/hess-20-1405-2016.
  • Taormina, R., K. Wing Chau, and R. Sethi. 2012. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence 25 (8):1670–76. doi:10.1016/j.engappai.2012.02.009.
  • Taraz, V. 2017. Adaptation to climate change: Historical evidence from the Indian monsoon. Environment and Development Economics 22 (5):517–45. doi:10.1017/S1355770X17000195.
  • Toews, M. W. 2007. File: Surface water cycle.svg - Wikimedia commons. https://commons.wikimedia.org/wiki/File:Surface_water_cycle.svg
  • Tsanis, I. K., and M. G. Apostolaki. 2009. Estimating groundwater withdrawal in poorly gauged agricultural basins. Water Resources Management 23 (6):1097–123. doi:10.1007/s11269-008-9317-x.
  • UNEP (United Nations Environment Programme). 2010. Division of early warning, assessment, African ministers’ council on water, African union. Commission, United States. Department of State, & European Union 1 1–100 . UNEP/Earthprint.
  • Wang, W., J. Jin, and Y. Li. 2009. Prediction of inflow at three gorges dam in yangtze river with wavelet network model. Water Resources Management 23 (13):2791–803. doi:10.1007/s11269-009-9409-2.
  • Willmott, C. J. 1981. On the validation of models. Physical Geography 2 (2):184–94. doi:10.1080/02723646.1981.10642213.
  • Yaseen, Z. M., S. Oleiwi Sulaiman, R. C. Deo, and K. Wing Chau. 2019. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology 569:387–408. doi:10.1016/j.jhydrol.2018.11.069.
  • Yeboah, K. A., K. Akpoti, A. T. Kabo-Bah, E. A. Ofosu, E. K. Siabi, E. M. Mortey, and S. A. Okyereh. 2022. Assessing climate change projections in the volta basin using the CORDEX-Africa climate simulations and statistical bias-correction. Environmental Challenges 6 (August 2021):100439. doi:10.1016/j.envc.2021.100439.
  • Zhang, Y. 2019. Estimation of potential evapotranspiration by different methods in Handan Eastern Plain, China. 4 (4):117–23. doi:10.11648/j.ajwse.20180404.15.