2,900
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial Intelligence-based Prediction of Diabetes and Prediabetes Using Health Checkup Data in Korea

, , , &
Article: 2145644 | Received 18 Aug 2022, Accepted 04 Nov 2022, Published online: 21 Nov 2022

References

  • Adu,M.D., U.H.Malabu, A.E.O.Malau-Aduli, and B.S.Malau-Aduli. 2019. Enablers and barriers to effective diabetes self- management: A multi- national investigation. PLOS ONE 14(6):e0217771. doi:10.1371/journal.pone.0217771.
  • Alasadi,S.A., and W.S.Bhaya. 2017. Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences 12(16):4102–3772.
  • Altmann,A., L.Toloşi, O.Sander, and T.Lengauer. 2010. Permutation importance: Acorrected feature importance measure. Bioinformatics 26(10):1340–47. doi:10.1093/bioinformatics/btq134.
  • Association,A.D. 2020. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 44(Supplement_1):S15–33.
  • Berbudi,A., N.Rahmadika, A.I.Tjahjadi, and R.Ruslami. 2020. Type 2 diabetes and its impact on the immune system. Current Diabetes Reviews 16(5):442–49. doi:10.2174/1573399815666191024085838.
  • Braunwald,E. 2019. Diabetes, heart failure, and renal dysfunction: The vicious circles. Progress in cardiovascular diseases 62(4):298–302. doi:10.1016/j.pcad.2019.07.003.
  • Carls,G.S., E.Tuttle, R.-D.Tan, J.Huynh, J.Yee, S.V.Edelman, and W.H.Polonsky. 2017. Understanding the gap between efficacy in randomized controlled trials and effectiveness in real- world use of GLP- 1 RA and DPP- 4 therapies in patients with type 2 diabetes. Diabetes Care 40(11):1469. doi:10.2337/dc16-2725.
  • Chatterjee,R., H.-C.Yeh, D.Edelman, and F.Brancati. 2011. Potassium and risk of Type 2 diabetes. Expert Review of Endocrinology & Metabolism 6(5):665–72. doi:10.1586/eem.11.60.
  • Choubey,D.K., S.Paul, S.Kumar, and S.Kumar. (2017). Classification of Pima Indian diabetes dataset using naive bayes with genetic algorithm as an attribute selection. Communication and computing systems: proceedings of the international conference on communication and computing system (ICCCS 2016), 451–455.
  • Deberneh,H.M., and I.Kim. 2021. Prediction of type 2 diabetes based on machine learning algorithm. International Journal of Environmental Research and Public Health 18(6):3317. doi:10.3390/ijerph18063317.
  • Dinh,A., S.Miertschin, A.Young, and S.D.Mohanty. 2019. A data- driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Medical Informatics and Decision Making 19(1):1–15. doi:10.1186/s12911-019-0918-5.
  • Dreiseitl,S., and L.Ohno-Machado. 2002. Logistic regression and artificial neural network classification models: Amethodology review. Journal of Biomedical Informatics 35(5–6):352–59. doi:10.1016/S1532-0464(03)00034-0.
  • Echouffo-Tcheugui,J.B., K.M.Narayan, D.Weisman, S.H.Golden, and B.G.Jaar. 2016. Association between prediabetes and risk of chronic kidney disease: Asystematic review and meta- analysis. Diabetic Medicine 33(12):1615–24. doi:10.1111/dme.13113.
  • Edwards,C.M., and K.Cusi. 2016. Prediabetes: Aworldwide epidemic. Endocrinology and Metabolism Clinics of North America 45(4):751–64. doi:10.1016/j.ecl.2016.06.007.
  • Fisher,A., C.Rudin, and F.Dominici. 2019. All models are wrong, but many are useful: Learning avariable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research : JMLR 20(177):1–81.
  • Fonti,V., and Belitser,E. 2017. Feature selection using lasso. VU Amsterdam research paper in business analytics 30:1–25.
  • FreemanandPennings. 2022. Insulin Resistance. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK507839/
  • Geurts, P., D. Ernst, and L. Wehenkel. 2006. Extremely randomized trees. Machine Learning 63 (1):3–42. doi:10.1007/s10994-006-6226-1.
  • Haghighi,S., M.Amini, Z.Pournaghshband, P.Amini, and S.Hovsepian. 2011. Relationship between gamma- glutamyl transferase and glucose intolerance in first degree relatives of type 2 diabetics patients. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences 16(2):123–29.
  • Haixiang,G., L.Yijing, J.Shang, G.Mingyun, H.Yuanyue, and G.Bing. 2017. Learning from class- imbalanced data: Review of methods and applications. Expert Systems with Applications 73:220–39. doi:10.1016/j.eswa.2016.12.035.
  • Hoque,N., D.K.Bhattacharyya, and J.K.Kalita. 2014. MIFS-ND: Amutual information- based feature selection method. Expert Systems with Applications 41(14):6371–85. doi:10.1016/j.eswa.2014.04.019.
  • Hossain,M.E., S.Uddin, and A.Khan. 2021. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Systems with Applications 164:113918. doi:10.1016/j.eswa.2020.113918.
  • Jadhav,A., D.Pramod, and K.Ramanathan. 2019. Comparison of performance of data imputation methods for numeric dataset. Applied Artificial Intelligence 33(10):913–33. doi:10.1080/08839514.2019.1637138.
  • Jung,C.-H., J.W.Son, S.Kang, W.J.Kim, H.-S.Kim, H.S.Kim, M.Seo, H.-J.Shin, S.-S.Lee, S.J.Jeong, et al. 2021. Diabetes fact sheets in Korea, 2020: An appraisal of current status. Diabetes & Metabolism Journal 45(1):1–10. doi:10.4093/dmj.2020.0254.
  • Kalra,S., S.Aggarwal, and D.Khandelwal. 2019. Thyroid dysfunction and type 2 diabetes mellitus: Screening strategies and implications for management. Diabetes Therapy : Research, Treatment and Education of Diabetes and Related Disorders 10(6):2035–44. doi:10.1007/s13300-019-00700-4.
  • Ke,G., Q.Meng, T.Finley, T.Wang, W.Chen, W.Ma, Q.Ye, and T.-Y.Liu. 2017. Lightgbm: Ahighly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30:3146–54.
  • Khan,M.A.B., M.J.Hashim, J.K.King, R.D.Govender, H.Mustafa, and J.Al Kaabi. 2020. Epidemiology of type 2 diabetes – Global burden of disease and forecasted trends. Journal of Epidemiology and Global Health 10(1):107–11. doi:10.2991/jegh.k.191028.001.
  • Khan,A., S.Uddin, and U.Srinivasan. 2019. Chronic disease prediction using administrative data and graph theory: The case of type 2 diabetes. Expert Systems with Applications 136:230–41. doi:10.1016/j.eswa.2019.05.048.
  • Korean Statistical Information Service (KOSIS). 2021. Status of general health examination subjects and number of individuals undergoing general health examination by age: All. https://kosis.kr/statHtml/statHtml.do?orgId=350&tblId=DT_35007_N002_1&vw_cd=MT_ZTITLE&list_id=350_35007_A001&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
  • Kouitcheu Mabeku,L.B., M.L.Noundjeu Ngamga, and H.Leundji. 2020. Helicobacter pylori infection, arisk factor for type 2 diabetes mellitus: A hospital-based cross-sectional study among dyspeptic patients in Douala-Cameroon. Scientific Reports 10(1):12141. doi:10.1038/s41598-020-69208-3.
  • Kumari,V.A., and R.Chitra. 2013. Classification of diabetes disease using support vector machine. International Journal of Engineering Research and Applications 3(2):1797–801.
  • Kursa,M.B., A.Jankowski, and W.R.Rudnicki. 2010. Boruta–a system for feature selection. Fundamenta Informaticae 101(4):271–85. doi:10.3233/FI-2010-288.
  • Lee,H.-C., S.B.Yoon, S.-M.Yang, W.H.Kim, H.-G.Ryu, C.-W.Jung, K.-S.Suh, and K.H.Lee. 2018. Prediction of acute kidney injury after liver transplantation: Machine learning approaches vs. logistic regression model. Journal of Clinical Medicine 7(11):428. doi:10.3390/jcm7110428.
  • Nusinovici,S., Y.C.Tham, M.Y.Chak Yan, D.S.Wei Ting, J.Li, C.Sabanayagam, T.Y.Wong, and C.-Y.Cheng. 2020. Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology 122:56–69. doi:10.1016/j.jclinepi.2020.03.002.
  • Qi,Y. 2012. Random forest for bioinformatics (Ensemble machine learning), 307–23. Springer.
  • Qtea,H., and M.Awad. 2021. Using hybrid model of particle swarm optimization and multi- layer perceptron neural networks for classification of diabete. International Journal of Intelligent Engineering and Systems 14 (3):11–22.
  • Reddy,S.S.K. 2016. Diabetes. Endocrinology and Metabolism Clinics of North America 45(4): i. doi:10.1016/S0889-8529(16)30110-4.
  • Sabanayagam,C., A.Shankar, J.Li, C.Pollard, and A.Ducatman. 2009. Serum gamma-glutamyl transferase level and diabetes mellitus among US adults. European Journal of Epidemiology 24(7):369–73. doi:10.1007/s10654-009-9346-7.
  • Schlender,L., Y.V.Martinez, C.Adeniji, D.Reeves, B.Faller, C.Sommerauer, T.Al Qur’An, A.Woodham, I.Kunnamo, A.Sönnichsen, et al. 2017. Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: Asystematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatrics 17(1):227. doi:10.1186/s12877-017-0574-5.
  • Sharma,T., and M.Shah. 2021. Acomprehensive review of machine learning techniques on diabetes detection. Visual Computing for Industry, Biomedicine, and Art 4(1):30. doi:10.1186/s42492-021-00097-7.
  • Souza,C.F.D., J.L.Gross, F.Gerchman, and C.B.Leitão. 2012. Prediabetes: Diagnosis, evaluation of chronic complications, and treatment. Arquivos Brasileiros de Endocrinologia & Metabologia 56(5):275–84. doi:10.1590/S0004-27302012000500001.
  • Standl,E., K.Khunti, T.B.Hansen, and O.Schnell. 2020. The global epidemics of diabetes in the 21st century: Current situation and perspectives. European Journal of Preventive Cardiology 26(2_suppl):7–14. doi:10.1177/2047487319881021.
  • Tab Ák,A.G., C.Herder, W.Rathmann, E.J.Brunner, and M.Kivimäki. 2012. Prediabetes: A high- risk state for diabetes development. The Lancet 379(9833):2279–90. doi:10.1016/S0140-6736(12)60283-9.
  • Tariq,A., K.Okamato, A.Tariq, A.Z.Rosenberg, K.M.Soliman, D.W.Ploth, M.G.Atta, and B.A.McMahon. 2020. Eosinophilia and risk of incident end stage kidney disease. BMC Nephrology 21(1):14. doi:10.1186/s12882-020-1685-3.
  • Uddin,S., T.Imam, M.E.Hossain, E.Gide, O.A.Sianaki, M.A.Moni, A.A.Mohammed, and V.Vandana. 2022. Intelligent type 2 diabetes risk prediction from administrative claim data. Informatics for Health & Social Care 47(3):243–57. doi:10.1080/17538157.2021.1988957.
  • WHO (World Health Organization). 2022. Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  • Wu, Y., Hu, H., Cai, J., Chen, R., Zuo, X., Cheng, H., Yan, D. 2021 Machine learning for predicting the 3-year risk of incident diabetes in Chinese adults Frontiers in Public Health 9 doi:10.3389/fpubh.2021.626331
  • Wu,J.-D., D.-L.Liang, and Y.Xie. 2021. Prediabetes and risk of heart failure: The link grows stronger. Cardiovascular diabetology 20(1):112. doi:10.1186/s12933-021-01302-w.
  • Xie,Y., B.Bowe, T.Li, H.Xian, Y.Yan, and Z.Al-Aly. 2018. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney International 93(3):741–52. doi:10.1016/j.kint.2017.08.033.
  • Zand,A., K.Ibrahim, and B.Patham. 2018. Prediabetes: Why should we care? Methodist DeBakey Cardiovascular Journal 14(4):289. doi:10.14797/mdcj-14-4-289.
  • Zhang,L., and C.Zhan. (2017). Machine learning in rock facies classification: An application of XGBoost. International Geophysical Conference, Qingdao, China, April 17-20.
  • Zhou,B., Y.Lu, K.Hajifathalian, J.Bentham, M.Di Cesare, G.Danaei, H.Bixby, M.J.Cowan, M.K.Ali, C.Taddei, et al. 2016. Worldwide trends in diabetes since 1980: Apooled analysis of 751 population-based studies with 4·4million participants. The Lancet 387(10027):1513–30. doi:10.1016/S0140-6736(16)00618-8.
  • Zhu,T., K.Li, P.Herrero, and P.Georgiou. 2021. Deep learning for diabetes: Asystematic review. IEEE Journal of Biomedical and Health Informatics 25(7):2744–57. doi:10.1109/JBHI.2020.3040225.
  • Zhu,M., J.Xia, X.Jin, M.Yan, G.Cai, J.Yan, and G.Ning. 2018. Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access 6:4641–52. doi:10.1109/ACCESS.2018.2789428.