676
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Multi-Model Prediction Method for Coal Mine Gas Concentration with Hierarchical Structure

, ORCID Icon &
Article: 2146296 | Received 20 Jul 2022, Accepted 04 Nov 2022, Published online: 22 Nov 2022

References

  • Altan, A., S. Karasu, and E. Zio. 2021. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing 100:106996. doi:10.1016/j.asoc.2020.106996.
  • Bo, C. Y., J. F. Qiao, and G. Yang. 2011. A multi-module cooperative neural network. CAAI Transactions on Intelligent Systems 6 (3):225–3792.
  • Du, D., X. Jiang, H. Sun, and Z. Nie. 2019. An APSO-BP prediction modeling of malodorous gas in landfill based on historical data. Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, Wuhan, Hubei, China, 390–93.
  • Guo, S., and Y. Li. 2018. Prediction of underground gas concentration state based on data fusion. Journal of Xi’an University of Science and Technology 38 (3):506–14.
  • Jia, P., and J. Deng. 2012. Coal mine gas concentration combination prediction model based on universal average operation. Zhongguo Anquan Kexue Xuebao 22 (6):41–46.
  • Jia, P., H. Liu, S. Wang, and P. Wang. 2020. Research on a mine gas concentration forecasting model based on a GRU network. IEEE Access 8:38023–31. doi:10.1109/ACCESS.2020.2975257.
  • Jin, G. G., and Y. D. Son. 2019. Design of a nonlinear PID controller and tuning rules for first-order plus time delay models. Studies in Informatics and Control 28 (2):157–66. doi:10.24846/v28i2y201904.
  • Karasu, S., and A. Altan. 2022. Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization. Energy 242:122964. doi:10.1016/j.energy.2021.122964.
  • Karasu, S., A. Altan, S. Bekiros, and W. Ahmad. 2020. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750. doi:10.1016/j.energy.2020.118750.
  • Kim, H., R. Eykholt, and J. D. Salas. 1999. Nonlinear dynamics, delay times, and embedding windows. Physica D Nonlinear Phenomena 127 (1–2):48–60. doi:10.1016/S0167-2789(98)00240-1.
  • Li, D., M. Han, and J. Wang. 2012. Chaotic time series prediction based on a novel robust echo state network. IEEE Transactions on Neural Networks and Learning Systems 23 (5):787–99. doi:10.1109/TNNLS.2012.2188414.
  • Liu, Y., Q. Zhao, and W. Hao. 2015. Study of gas concentration prediction based on genetic algorithm and optimizing BP neural network. Mining Safety & Environmental Protection 42 (02):56–60.
  • Li, B., E. Wang, Z. Shang, Z. Li, B. Li, X. Liu, H. Wang, Y. Niu, Q. Wu, and Y. Song. 2021. Deep learning approach to coal and gas outburst recognition employing modified AE and EMR signal from empirical mode decomposition and time-frequency analysis. Journal of Natural Gas Science and Engineering 90:103942. doi:10.1016/j.jngse.2021.103942.
  • Nisbet, E. G., M. R. Manning, E. J. Dlugokencky, R. E. Fisher, D. Lowry, S. E. Michel, C. Lund Myhre, S. M. Platt, G. Allen, P. Bousquet, et al. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris agreement. Global biogeochemical cycles 33 (3):318–42. doi:10.1029/2018GB006009.
  • Niu, Y., X. Song, Z. Li, E. Wang, Q. Liu, X. Zhang, G. Cai, and Q. Zhang. 2020. Experimental study and field verification of stability monitoring of gas drainage borehole in mining coal seam. Journal of Petroleum Science and Engineering 189:106985. doi:10.1016/j.petrol.2020.106985.
  • Pang, Q., L. X. Tang, M. Z. Yuan, and X. P. Wang. 2012. The multi-model predictive control method research on the outlet temperature control of ethylene cracking furnace. Proceedings of the 31st Chinese Control Conference, IEEE, Hefei, China, 4044–49.
  • Park, H. S., W. Pedrycz, and S. K. Oh. 2009. Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields. IEEE Transactions on Neural Networks 20 (10):1604–16. doi:10.1109/TNN.2009.2027319.
  • Pedrycz, W. 1998. Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks 9 (4):601–12. doi:10.1109/72.701174.
  • Perendeci, A., S. Arslan, S. S. Celebi, and A. Tanyolac. 2008. Prediction of effluent quality of an anaerobic treatment plant under unsteady state through ANFIS modeling with on-line input variables. Chemical Engineering Journal 145 (1):78–85. doi:10.1016/j.cej.2008.03.008.
  • Pipino, H. A., C. A. Cappelletti, and E. J. Adam. 2021. Adaptive multi-model predictive control applied to continuous stirred tank reactor. Computers & Chemical Engineering 145:107195. doi:10.1016/j.compchemeng.2020.107195.
  • Prakash, U. M., K. Kottursamy, K. Cengiz, U. Kose, and B. T. Hung. 2021. 4x-expert systems for early prediction of osteoporosis using multi-model algorithms. Measurement 180:109543. doi:10.1016/j.measurement.2021.109543.
  • Qiao, M., X. Ma, J. Lan, and Y. Wang. 2011. Time-series gas prediction model using LS-SVR within a Bayesian framework. Mining Science and Technology (China) 21 (1):153–57. doi:10.1016/j.mstc.2010.12.012.
  • Sohani, A., H. Sayyaadi, C. Cornaro, M. H. Shahverdian, M. Pierro, D. Moser, M. H. Doranehgrad, N. Karimi, and L. K. Li. 2022. Using machine learning in photovoltaics to create smarter and cleaner energy generation systems: A comprehensive review. Journal of Cleaner Production 364:132701. doi:10.1016/j.jclepro.2022.132701.
  • Soltani, S. 2002. On the use of the wavelet decomposition for time series prediction. Neurocomputing 48 (1–4):267–77.
  • Song, Y., S. Yang, X. Hu, W. Song, N. Sang, J. Cai, and Q. Xu. 2019. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Safety and Environmental Protection 129:8–16. doi:10.1016/j.psep.2019.06.013.
  • Wang, W., H. Wang, B. Zhang, S. Wang, and W. Xing. 2021. Coal and gas outburst prediction model based on extension theory and its application. Process Safety and Environmental Protection 154:329–37. doi:10.1016/j.psep.2021.08.023.
  • Yin, G. Z., M. H. Li, and W. P. LI. 2013. Model of coal gas permeability prediction based on improved BP neural network. Journal of China Coal Society 38 (7):1179–84.
  • Zeng, J., and Q. Li. 2021. Research on prediction accuracy of coal mine gas emission based on grey prediction model. Processes 9 (7):1147. doi:10.3390/pr9071147.
  • Zhang, Q. 2019. Process technology and design research of intelligent mixing system for low concentration gas based on S7-1200. Mining Safety & Environmental Protection 46 (2):79–83.
  • Zhang, T., S. Song, S. Li, L. Ma, S. Pan, and L. Han. 2019. Research on gas concentration prediction models based on LSTM multidimensional time series. Energies 12 (1):161. doi:10.3390/en12010161.
  • Zhou, X. L., G. Zhang, C. Lyu, and H. Huang. 2017. A grey model for predicting the gas content in the deep coal seam and its application via the neural network of the difference radial basis function. Journal Safety Environment 17:2050–55.