678
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Iterative Convolutional Encoder-Decoder Network with Multi-Scale Context Learning for Liver Segmentation

, , , , &
Article: 2151186 | Received 15 Sep 2022, Accepted 18 Nov 2022, Published online: 08 Dec 2022

References

  • Badrinarayanan, V., A. Kendall, and R. Cipolla. 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (12):2481–3943. doi:10.1109/TPAMI.2016.2644615.
  • Bilic, P., Christ, P.F. et al . 2022. The liver tumor segmentation benchmark (lits). arXiv preprint arXiv:1901.04056.
  • Cao, H. , Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. 2022. Swin-Unet: Unet-like pure transformer for medical image segmentation. Proceedings of the European Conference on Computer Vision Workshops Tel Aviv, Israel, 1–14.
  • Cerrolaza, J. J., M. Reyes, R. M. Summers, M. Á. González-Ballester, and M. G. Linguraru. 2015. Automatic multi-resolution shape modeling of multi-organ structures. Medical Image Analysis 25 (1):11–21. doi:10.1016/j.media.2015.04.003.
  • Chartrand, G., T. Cresson, R. Chav, A. Gotra, A. Tang, and J. A. De Guise. 2017. Liver segmentation on CT and MR using laplacian mesh optimization. IEEE Transactions on Biomedical Engineering 64 (9):2110–21. doi:10.1109/TBME.2016.2631139.
  • Chen, Y., W. Chen, X. Yin, X. Ye, X. Bao, L. Luo, Q. Feng, Y. Li, and X. Yu. 2011. Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods. European Journal of Radiology 80 (2):E42–49. doi:10.1016/j.ejrad.2010.07.003.
  • Chen, S., Gamechi, Z.S., Dubost, F., Tulder, G., Bruijne, M. 2022. An end-to-end approach to segmentation in medical images with CNN and posterior-CRF. Medical Image Analysis 76: 102311.
  • Chen, J., Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou. 2021. TransUnet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306.
  • Chen, H., X. Pan, X. Lu, and Q. Xie. 2020. A modified graph cuts image segmentation algorithm with adaptive shape constraints and its application to computed tomography images. Biomedical signal processing and control 62:102092. doi:10.1016/j.bspc.2020.102092.
  • Chen, J., Yang, L., Zhang, Y., Alber, Mark, Chen, D.Z. 2016 .Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. Conference on Neural Information Processing Systems Centre Convencions Internacional Barcelona, Barcelona SPAIN, vol. 29, 1–9.
  • Cicek, O., Abdulkadir, A., Lienkamp, S., Brox, T., Ronneberger, O. 2016. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. arXiv preprint arXiv:1606.06650v1.
  • Dumoulin, V., and F. Visin. 2018. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285v2.
  • Gibson, E., F. Giganti, Y. Hu, E. Bonmati, S. Bandula, K. Gurusamy, B. Davidson, S. P. Pereira, M. J. Clarkson, and D. C. Barratt. 2018. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Transactions on Medical Imaging 37 (8):1822–34. doi:10.1109/TMI.2018.2806309.
  • Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H., Xu, D. 2022. UNETR: Transformers for 3d medical image segmentation. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Waikoloa, HI, USA.
  • Heimann, T., B. van Ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, et al. 2009. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28 (8):1251–65. doi:10.1109/TMI.2009.2013851.
  • Jin, C., F. Shi, D. Xiang, X. Jiang, B. Zhang, X. Wang, W. Zhu, E. Gao, and X. Chen. 2016. 3D fast automatic segmentation of kidney based on modified AAM and random forest. IEEE Transactions on Medical Imaging 35 (6):1395–407. doi:10.1109/TMI.2015.2512606.
  • Kavur, A. E., Gezer, N.S., Barış, M. et al 2020. CHAOS challenge - combined (CT-MR) healthy abdominal organ segmentation. arXiv preprint arXiv:2001.06535.
  • Ker, J., L. Wang, J. Rao, and T. Lim. 2018. Deep learning applications in medical image analysis. IEEE Access 6:9375–89. doi:10.1109/ACCESS.2017.2788044.
  • Kingma, D. P., and J. Ba. 2014. ADAM: A method for stochastic optimization. [Online]. https://arxiv.org/abs/1412.6980.
  • Li, G., X. Chen, F. Shi, W. Zhu, J. Tian, and D. Xiang. 2015. Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Transactions on Image Processing 24 (12):5315–29. doi:10.1109/TIP.2015.2481326.
  • Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. 2017. A survey on deep learning in medical image analysis. Medical Image Analysis 42:60–88. doi:10.1016/j.media.2017.07.005.
  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030v2.
  • Long, J., Shelhamer, E., Darrell, T. 2015. Fully convolutional networks for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition Boston, MA, USA, 3431–40.
  • Moghbel, M., S. Mashohor, R. Mahmud, and M. I. B. Saripan. 2018. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. Artificial Intelligence Review 50 (4):497–537. doi:10.1007/s10462-017-9550-x.
  • Nair, V., and G. E. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. Proceedings of ICML Haifa, Israel, 807–14.
  • Oktay, O., Schlemper, J., Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N., Kainz, B., Glocker, B., Rueckert, D. 2018. Attention U-Net: Learning where to look for the pancreas. Conference on Medical Imaging with Deep Learning Amsterdam, 1–10.
  • Paszke, A., Gross, S., Chintala, S. et al 2017. Automatic differentiation in pytorch. NIPS-W.
  • Ronneberger, O., Fischer, P., Brox, T. 2015. U-Net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention Munich, Germany, 234–41.
  • Salehi, S. S. M., D. Erdogmus, and A. Gholipour. 2017. Auto-context convolutional neural network for brain extraction in magnetic resonance imaging. IEEE Transactions on Medical Imaging 36 (11):2319–30. doi:10.1109/TMI.2017.2721362.
  • Shen, D., G. Wu, and H.-I. Suk. 2017. Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19 (1):221–48. doi:10.1146/annurev-bioeng-071516-044442.
  • Tang, A., J. Chen, T.-A. Le, C. Changchien, G. Hamilton, M. S. Middleton, R. Loomba, and C. B. Sirlin. 2015. Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis. Abdominal imaging 40 (1):26–37. doi:10.1007/s00261-014-0175-0.
  • Wang, J., Y. Cheng, C. Guo, Y. Wang, and S. Tamura. 2016. Shape–intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. International Journal of Computer Assisted Radiology and Surgery 11 (5):817–26. doi:10.1007/s11548-015-1332-9.
  • Yang, X., L. Yu, S. Li, H. Wen, D. Luo, C. Bian, J. Qin, D. Ni, and P.-A. Heng. 2019. Towards automated semantic segmentation in prenatal volumetric ultrasound. IEEE Transactions on Medical Imaging 38 (1):180–93. doi:10.1109/TMI.2018.2858779.
  • Zhang, Y., He, Z., Zhong, C., Zhang, Y., Shi, Z. 2017. Fully convolutional neural network with post-processing methods for automatic liver segmentation from CT. Chinese Automation Congress, 3864–69.
  • Zhang, Y., Jiang, X., Zhong, C., Zhang, Y., Shi, Z., Li, Z. 2018. SequentialSegNet: Combination with sequential feature for multi-organ segmentation. International Conference on Pattern Recognition Beijing,China, 3864–69.
  • Zhang, Y., J. Wu, Y. Liu, Y. Chen, W. Chen, E. Wu, C. Li, and X. Tang. 2021. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Medical Image Analysis 68:101884. doi:10.1016/j.media.2020.101884.
  • Zhang, Y., Yang, J., Liu, Y., Tian, J., Wang, S., Zhong, C., Shi, Z., Yang, Z., He, Z. 2022. Decoupled pyramid correlation network for liver tumor segmentation from CT images. Medical Physics: 1–15. doi:10.1016/j.ejmp.2022.04.018.
  • Zhou, Z., Siddiquee, M., Tajbakhsh, N., Liang, J. 2020. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging 37 (8):1822–34.