1,778
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Advanced CNN Architectures for Pollen Classification: Design and Comprehensive Evaluation

ORCID Icon, , , , &
Article: 2157593 | Received 30 Sep 2022, Accepted 07 Dec 2022, Published online: 21 Dec 2022

References

  • Beggs, P. J. 2017. Allergen aerosol from pollen-nucleated precipitation: A novel thunderstorm asthma trigger. Atmospheric environment 152:455–61. doi:10.1016/j.atmosenv.2016.12.045.
  • Bennett, K. D., and K. J. Willis. 2002. Pollen. In Tracking environmental change using lake sediments. developments in paleoenvironmental research, J. P. Smol, H. J. B. Birks, W. M. Last, R. S. Bradley, and K. Alverson. ed., vol. 3, Dordrecht: Springer. 10.1007/0-306-47668-1\_2
  • Boldeanu, M., H. Cucu, C. Burileanu, and L. Marmureanu. 2021. Multi-Input convolutional neural networks for automatic pollen classification. Applied Sciences 11 (24):11707. doi:10.3390/app112411707.
  • Boldeanu, M., M. González-Alonso, H. Cucu, C. Burileanu, J. M. Maya-Manzano, and J. T. M. Buters. 2022. Automatic pollen classification and segmentation using u-nets and synthetic data. IEEE Access 10:73675–84. doi:10.1109/ACCESS.2022.3189012.
  • Burbach, G. J., L. M. Heinzerling, G. Edenharter, C. Bachert, C. Bindslev-Jensen, S. Bonini, J. Bousquet, L. Bousquet-Rouanet, P. J. Bousquet, M. Bresciani, et al. 2009. GA2LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 64(10):1507–15. doi:10.1111/j.1398-9995.2009.02089.x.
  • Buters, J. T. M., C. Antunes, A. Galveias, K. C. Bergmann, M. Thibaudon, C. Galan, C. Schmidt-Weber, and J. Oteros. 2018. Pollen and spore monitoring in the world. Clinical and Translational Allergy 8 (1):9. PMID: 29636895; PMCID: PMC5883412. doi:10.1186/s13601-018-0197-8.
  • Buters, J., B. Clot, C. Galán, R. Gehrig, S. Gilge, F. Hentges, D. O’Connor, B. Sikoparija, C. Skjoth, F. Tummon, et al. 2022. Automatic detection of airborne pollen: An overview. Aerobiologia. doi:10.1007/s10453-022-09750-x.
  • Crouzy, B., G. Lieberherr, F. Tummon, and B. Clot. 2022. False positives: Handling them operationally for automatic pollen monitoring. Aerobiologia 38 (3):429–32. doi:10.1007/s10453-022-09757-4.
  • Culley, T. M., S. G. Weller, and A. K. Sakai. 2002. The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution 17 (8):361–69. doi:10.1016/S0169-5347(02)02540-5.
  • Dahl, A., C. Galán, L. Hajkova, A. Pauling, B. Sikoparija, M. Smith, and D. Vokou. 2013. The onset, course and intensity of the pollen season. In Allergenic pollen: A review of the production, release, distribution and health impacts, ed. M. Sofiev and C.-K. Bergman, 29–70. pp272. Springer Verlag. doi: 10.1007/978-94-007-4881-1\_3.
  • D’Amato, G., L. Cecchi, S. Bonini, C. Nunes, I. Annesi-Maesano, H. Behrendt, G. Liccardi, T. Popov, and P. van Cauwenberge. 2007. Allergenic pollen and pollen allergy in Europe. Allergy 62 (9):976–90. doi:10.1111/j.1398-9995.2007.01393.x.
  • de Weger, L. A., P. T. W. van Hal, B. Bos, F. Molster, M. Mostert, and P. S. Hiemstra. 2021. Personalized pollen monitoring and symptom scores: A feasibility study in grass pollen allergic patients. Frontiers in Allergy 2:628400. doi:10.3389/falgy.2021.628400.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–78. doi: 10.1109/cvpr.2016.90
  • Hirst, J. M. 1952. An automatic volumetric spore trap. The Annals of Applied Biology 39 (2):257–65. doi:10.1111/j.1744-7348.1952.tb00904.x.
  • Hsiao, T. Y., Y. C. Chang, H. H. Chou, and C. T. Chiu. 2019. Filter-based deep-compression with global average pooling for convolutional networks. Journal of Systems Architecture 95:9–18. doi:10.1016/j.sysarc.2019.02.008.
  • Huffman, J. A., A. E. Perring, N. J. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, V. Sivaprakasam, et al. 2019. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology. 54(5):1–56. doi:10.1080/02786826.2019.166472.
  • Kasprzyk, I., B. Ortyl, and A. Dulska-Jez. 2014. Relationships among weather parameters, airborne pollen and seed crops of Fagus and Quercus in Poland. Agricultural and Forest Meteorology 197:111–22. doi:10.1016/j.agrformet.2014.05.015.
  • Kawashima, S., B. Clot, T. Fujita, Y. Takahashi, and K. Nakamura. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41(36), 7987–7993. doi:10.1016/j.atmosenv.2007.09.019
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Proceedings of the 2012 Advances in Neural Information Processing Systems 25 (NIPS). doi:10.1145/3065386.
  • Larsson, G., M. Maire, and G. Shakhnarovich. 2016. FractalNet: Ultra-Deep Neural Networks Without Residuals doi:10.48550/arXiv.1605.07648.
  • Matavulj, P., S. Brdar, M. Racković, B. Sikoparija, and I. N. Athanasiadis. 2021. Domain adaptation with unlabeled data for model transferability between airborne particle identifiers. 17th International Conference on Machine Learning and Data Mining (MLDM 2021), New York, USA. doi: 10.5281/zenodo.5574164
  • Matavulj, P., A. Cristofori, F. Cristofolini, E. Gottardini, S. Brdar, and B. Sikoparija. 2022. Integration of reference data from different rapid-E devices supports automatic pollen detection in more locations. The Science of the Total Environment 158234. doi:10.1016/j.scitotenv.2022.158234.
  • O’Connor, D. J., D. A. Healy, S. Hellebust, J. T. M. Buters, and J. R. Sodeau. 2014. Using the wibs-4 (waveband integrated bioaerosol sensor) technique for the on-line detection of pollen grains. Aerosol Science and Technology 48 (4):341–49. doi: 10.1080/02786826.2013.872768.
  • Oteros, J., F. Orlandi, H. García-Mozo, F. Aguilera, A. B. Dhiab, T. Bonofiglio, M. Abicou, L. Ruiz-Valenzuela, M. Mar Del Trigo, C. Diaz de la Guardia, et al. 2014. Better prediction of Mediterranean olive production using pollen-based models. Agronomy for Sustainable Development 34:685–94. doi:10.1007/s13593-013-0198-x.
  • Oteros, J., A. Weber, S. Kutzora, J. Rojo, S. Heinze, C. Herr, R. Gebauer, C. B. Schmidt-Weber, and J. T. M. Buters. 2020. An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research 191:110031. doi:10.1016/j.envres.2020.110031.
  • Plaza, M. P., F. Kolek, V. Leier-Wirtz, J. O. Brunner, C. Traidl-Hoffmann, and A. Damialis. 2022. Detecting airborne pollen using an automatic, real-time monitoring system: Evidence from two sites. International Journal of Environmental Research and Public Health 19 (4):2471. doi:10.3390/ijerph19042471.
  • Sauliene, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the rapid-E particle counter: The first-level procedure, experience and next steps, atmos. Atmospheric Measurement Techniques. 12(6):3435–52. doi:10.5194/amt-12-3435-2019.
  • Sauvageat, E., Y. Zeder, K. Auderset, B. Calpini, B. Clot, B. Crouzy, T. Konzelmann, G. Lieberherr, F. Tummon, and K. Vasilatou. 2020. Real-time pollen monitoring using digital holography. Atmospheric Measurement Techniques 13 (3):1539–50. doi:10.5194/amt-13-1539-2020.
  • Schiele, J., F. Rabe, M. Schmitt, M. Glaser, F. Haring, J. O. Brunner, B. Bauer, B. Schuller, C. Traidl-Hoffmann, and A. Damialis. 2019. Automated classification of airborne pollen using neural networks. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi: 10.1109/embc.2019.8856910
  • Sikoparija, B., P. Matavulj, G. Mimić, M. Smith, Ł. Grewling, and Z. Podrascanin. 2022. Real-time automatic detection of starch particles in ambient air. Agricultural and Forest Meteorology 323:109034. doi:10.1016/j.agrformet.2022.109034.
  • Sikoparija, B., G. Mimic, P. Matavulj, M. Panic, I. Simovic, and S. Brdar. 2019. Short communication: Do we need continuous sampling to capture variability of hourly pollen concentrations? Aerobiologia 36 (1):3–7. doi:10.1007/s10453-019-09575-1.
  • Simonyan, K., and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. Proceedings of The International Conference on Learning Representations (ICLR). 75, 6:398–406. doi: 10.48550/arXiv.1409.1556
  • Sofiev, M. 2019. On possibilities of assimilation of near-real-time pollen data by atmospheric composition models. Aerobiologia 35 (3):523–31. doi:10.1007/s10453-019-09583-1.
  • Sothe, C., C. M. De Almeida, M. B. Schimalski, L. E. C. La Rosa, J. D. B. Castro, R. Q. Feitosa, M. Dalponte, C. L. Lima, V. Liesenberg, G. T. Miyoshi, et al. 2020. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GIScience & Remote Sensing. 57(3):1–26. doi:10.1080/15481603.2020.1712102.
  • Srivastava, R. K., K. Greff, and J. Schmidhuber. 2015. Training very deep networks. In proceedings of the 2015 Advances in Neural Information Processing Systems (NIPS). doi: 10.48550/arXiv.1507.06228
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/cvpr.2015.7298594
  • Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.308
  • Tesendic, D., D. Boberic-Krsticev, P. Matavulj, S. Brdar, M. Panic, V. Minic, and B. Sikoparija. 2020. RealForall: Real-time system for automatic detection of airborne pollen. Enterprise Information Systems 16 (5). doi:10.1080/17517575.2020.1793391.
  • Tummon, F., S. Adamov, B. Clot, B. Crouzy, M. Gysel-Beer, S. Kawashima, G. Lieberherr, J. Manzano, E. Markey, A. Moallemi, et al. 2021. A first evaluation of multiple automatic pollen monitors run in parallel. Aerobiologia. doi:10.1007/s10453-021-09729-0.
  • Viertel, P., and M. König. 2022. Pattern recognition methodologies for pollen grain image classification: A survey. Machine Vision and Applications 33 (1):18. doi:10.1007/s00138-021-01271-w.
  • Xie, S., R. Girshick, P. Dollar, Z. Tu, and K. He. 2017. Aggregated residual transformations for deep neural networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/cvpr.2017.634
  • Zagoruyko, S., and N. Komodakis. 2016. Wide residual networks. Proceedings the British Machine Vision Conference .87.1–12. doi:10.48550/arXiv.1605.07146.
  • Ziska, L., K. Knowlton, C. Rogers, D. Dalan, N. Tierney, M. A. Elder, W. Filley, J. Shropshire, L. B. Ford, C. Hedberg, et al. 2011. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences. 108(10):4248e4251. doi:10.1073/pnas.1014107108.