1,948
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Spatial Simulation and Prediction of Air Temperature Based on CNN-LSTM

ORCID Icon, , , &
Article: 2166235 | Received 18 Jul 2022, Accepted 04 Jan 2023, Published online: 23 Jan 2023

References

  • Abdel-Aal, R. E. 2004. Hourly temperature forecasting using abductive networks. Engineering Applications of Artificial Intelligence 17 (5):543–217. doi:10.1016/j.engappai.2004.04.002.
  • Abdolrasol, M. G. M., S. M. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mohamed, J. A. Ali, S. Mekhilef, and A. Milad. 2021. Artificial neural networks based optimization techniques: A review. Electronics 10 (21):2689. doi:10.3390/electronics10212689.
  • Abramson, B., J. Brown, W. Edwards, A. Murphy, and R. L. Winkler. 1996. Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting 12 (1):57–71. doi:10.1016/0169-2070(95)00664-8.
  • Asha, J., K. S. Santhosh, and S. Rishidas. 2021. Forecasting performance comparison of daily maximum temperature using ARMA based methods. Journal of Physics: Conference Series 1921 (1):012041. doi:10.1088/1742-6596/1921/1/012041.
  • Astsatryan, H., H. Grigoryan, A. Poghosyan, R. Abrahamyan, S. Asmaryan, V. Muradyan, G. Tepanosyan, Y. Guigoz, and G. Giuliani. 2021. Air temperature forecasting using artificial neural network for Ararat valley. Earth Science Informatics 14 (2):711–22. doi:10.1007/s12145-021-00583-9.
  • Byeongseong, C., B. Mario, B. Z. Elie, and P. Matteo. 2021. Short-term probabilistic forecasting of meso-scale near-surface urban temperature fields. Environmental Modelling & Software 145 (11):105189. doi:10.1016/j.envsoft.2021.105189.
  • Carrión, D., K. B. Arfer, J. Rush, M. Dorman, S. T. Rowland, M. A. Kioumourtzoglou, I. Kloog, and A. C. Just. 2021. A 1-km hourly air-temperature model for 13 northeastern U.S. states using remotely sensed and ground-based measurements. Environmental Research 200:111477. doi:10.1016/j.envres.2021.111477.
  • Chevalier, R. F., G. Hoogenboom, R. W. Mcclendon, and J. A. Paz. 2011. Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks. Neural Computing & Applications 20 (1):151–59. doi:10.1007/s00521-010-0363-y.
  • Cifuentes, J., G. Marulanda, A. Bello, and J. Reneses. 2020. Air temperature forecasting using machine learning techniques: A review. Energies, MDPI 13 (16):1–28. doi:10.3390/en13164215.
  • Gautier, C., P. Peterson, and C. Jones. 1998. Ocean surface air temperature derived from multiple data sets and artificial neural networks. Geophysical Research Letters 25 (22):4217–20. doi:10.1029/1998GL900086.
  • Gos, M., J. Krzyszczak, P. Baranowski, M. Murat, and I. Malinowska. 2020. Combined TBATS and SVM model of minimum and maximum air temperatures applied to wheat yield prediction at different locations in Europe. Agricultural and Forest Meteorology 281:107827. doi:10.1016/j.agrformet.2019.107827.
  • Hanoon, M. S., A. N. Ahmed, N. Zaini, A. Razzaq, P. Kumar, M. Sherif, A. Sefelnasr, and A. ElShafie. 2021. Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia. Scientific Reports 11 (1): 18935–18935. doi:10.1038/s41598-021-96872-w.
  • Hernández-Travieso, J. G., A. G. Ravelo-García, J. B. Alonso-Hernández, and C. M. Travieso-González. 2020. Neural networks fusion for temperature forecasting. Neural Computing & Applications 32 (20):15699–710. doi:10.1007/s00521-018-3450-0.
  • Hou, J. W., Y. J. Wang, J. Zhou, and Q. Tian. 2022. Prediction of hourly air temperature based on CNN–LSTM. Geomatics, Natural Hazards and Risk 13 (1):1962–86. doi:10.1080/19475705.2022.2102942.
  • Jeong, S., I. Park, H. S. Kim, C. H. Song, and H. K. Kim. 2021. Temperature prediction based on bidirectional long short-term memory and convolutional neural network combining observed and numerical forecast data. Sensors 21 (3):941. doi:10.3390/s21030941.
  • Krasnopolsky, V. M., and M. S. Fox-Rabinovitz. 2006. Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks 19 (2):122–34. doi:10.1016/j.neunet.2006.01.002.
  • Lin, M. L., C. W. Tsai, and C. K. Chen. 2021. Daily maximum temperature forecasting in changing climate using a hybrid of multi-dimensional complementary ensemble empirical mode decomposition and radial basis function neural network. Journal of Hydrology: Regional Studies 38 (12):100923. doi:10.1016/j.ejrh.2021.100923.
  • Liu, Z., W. Zhan, J. Lai, F. Hong, J. Quan, B. Bechtel, F. Huang, and Z. Zou. 2019. Balancing prediction accuracy and generalization ability: A hybrid framework for modelling the annual dynamics of satellite-derived land surface temperatures. ISPRS Journal of Photogrammetry and Remote Sensing 151:189–206. doi:10.1016/j.isprsjprs.2019.03.013.
  • Livera, A. M. D., R. J. Hyndman, and R. D. Snyder. 2011. Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association 106 (496):1513–27. doi:10.1198/jasa.2011.tm09771.
  • Maqsood, I., M. Khan, and A. Abraham. 2004. An ensemble of neural networks for weather forecasting. Neural Computing & Applications 13 (2):112–22. doi:10.1007/s00521-004-0413-4.
  • Mba, L., P. Meukam, and A. Kemajou. 2016. Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region. Energy and Buildings 121:32–42. doi:10.1016/j.enbuild.2016.03.046.
  • Milad, A., I. Adwan, S. A. Majeed, N. I. M. Yusoff, N. Al-Ansari, and Z. M. Yaseen. 2021. Emerging technologies of deep learning models development for pavement temperature prediction. IEEE Access 9:23840–49. doi:10.1109/ACCESS.2021.3056568.
  • Mtibaa, F., K. K. Nguyen, M. Azam, A. Papachristou, J. S. Venne, and M. Cheriet. 2020. LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings. Neural Computing & Applications 32 (23):17569–85. doi:10.1007/s00521-020-04926-3.
  • Murat, M., I. Malinowska, M. Gos, and J. Krzyszczak. 2018. Forecasting daily meteorological time series using ARIMA and regression models. International Agrophysics 32 (2):253–64. doi:10.1515/intag-2017-0007.
  • Murat, M., I. Malinowska, H. Hoffmann, and P. Baranowski. 2016. Statistical modelling of agrometeorological time series by exponential smoothing. International Agrophysics 30 (1):57–65. doi:10.1515/intag-2015-0076.
  • Murthy, K. V. N., R. Saravana, G. K. Kumar, and K. V. Kumar. 2021. Modelling and forecasting for monthly surface air temperature patterns in India, 1951–2016: Structural time series approach. Journal of Earth System Science 130 (1):21. doi:10.1007/s12040-020-01521-x.
  • Nury, A. H., K. Hasan, and M. J. B. Alam. 2017. Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. Journal of King Saud University - Science 29 (1):47–61. doi:10.1016/j.jksus.2015.12.002.
  • Ortiz-Garcia, E. G., S. Salcedo-Sanz, C. Casanova-Mateo, A. Paniagua-Tineo, and J. A. Portilla-Figueras. 2012. Accurate local very short-term temperature prediction based on synoptic situation support vector regression banks. Atmospheric Research 107:1–8. doi:10.1016/j.atmosres.2011.10.013.
  • Prior, M. J., and M. C. Perry. 2014. Analyses of trends in air temperature in the United Kingdom using gridded data series from 1910 to 2011. International Journal of Climatology 34 (14):3766–79. doi:10.1002/joc.3944.
  • Radhika, Y., and M. Shashi. 2009. Atmospheric temperature prediction using support vector machines. International Journal of Computer Theory and Engineering 1 (1):55–58. doi:10.7763/IJCTE.2009.V1.9.
  • Ramesh, K., and R. Anitha. 2014. Marspline model for lead seven-day maximum and minimum air temperature prediction in Chennai, India. Journal of Earth System Science 123 (4):665–72. doi:10.1007/s12040-014-0434-z.
  • Şahin, M. 2012. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances in Space Research 50 (7):973–85. doi:10.1016/j.asr.2012.06.021.
  • Sebastian, K., C. Bartosz, K. Leszek, and G. M. de Caracas. 2018. Air temperature forecasts’ accuracy of selected short-term and long-term numerical weather prediction models over Poland. Geofizika 35 (1):67–85. doi:10.15233/gfz.2018.35.5.
  • Sekertekin, A., M. Bilgili, N. Arslan, A. Yildirim, K. Celebi, and A. Ozbek. 2021. Short-term air temperature prediction by adaptive neuro-fuzzy inference system (ANFIS) and long short-term memory (LSTM) network. Meteorology and Atmospheric Physics 133 (3):943–59. doi:10.1007/s00703-021-00791-4.
  • Stelian, C., T. Camille, T. B. M. J. Ouarda, C. Fateh, and N. S. Dabo. 2019. Short-term air temperature forecasting using nonparametric functional data analysis and SARMA models. Environmental Modelling & Software 111 (1):394–408. doi:10.1016/j.envsoft.2018.09.017.
  • Sun, Y., X. Yao, X. Bi, X. Huang, X. Zhao, and B. Qiao. 2021. Time-series graph network for sea surface temperature prediction. Big Data Research 25:100237. doi:10.1016/j.bdr.2021.100237.
  • Tasadduq, I., S. Rehman, and K. Bubshait. 2002. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy 25 (4):545–54. doi:10.1016/S0960-1481(01)00082-9.
  • Tran, T. T. K., S. M. Bateni, S. J. Ki, and H. Vosoughifar. 2021. A review of neural networks for air temperature forecasting. Water 13 (9): 1294−1294. doi:10.3390/w13091294.
  • Ustaoglu, B., H. K. Cigizoglu, and M. Karaca. 2008. Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorological Applications 15 (4):431–45. doi:10.1002/met.83.
  • Xiao, C., N. Chen, C. Hu, K. Wang, and Z. Chen. 2019. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-Adaboost combination approach. Remote Sensing of Environment 233:111358. doi:10.1016/j.rse.2019.111358.
  • Ye, L., G. Yang, E. V. Ranst, and H. Tang. 2013. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making. Advances in Atmospheric Sciences 30 (2):382–96. doi:10.1007/s00376-012-1252-3.
  • Y. J., Wang. 2022. Spatiotemporal temperature prediction based on CNN-LSTM and meteorological element correlation (Ningxia University (In Chinese)). https://webvpn.nxu.edu.cn/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1022054517.nh&uniplatform=NZKPT&v=fv_ws6hsUFqxuC8SZt546Zsv8i7iE5v9zpiD8hIyMncrbxIxjBajN_u1S66ikBCV
  • Yu, X., S. X. Shi, and L. Y. Xu. 2021. A spatial–temporal graph attention network approach for air temperature forecasting. Applied Soft Computing 113:107888. doi:10.1016/j.asoc.2021.107888.
  • Zhang, Z., Y. Dong, and Y. Yuan. 2020. Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity 2020:1–8. doi:10.1155/2020/3536572.
  • Zhang, X., Q. Zhang, G. Zhang, Z. Nie, Z. Gui, and H. Que. 2018. A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition. International Journal of Environmental Research and Public Health 15 (5):1032. doi:10.3390/ijerph15051032.