1,631
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving Face Recognition by Integrating Decision Forest into GAN

& ORCID Icon
Article: 2175108 | Received 24 Aug 2022, Accepted 27 Jan 2023, Published online: 10 Feb 2023

References

  • Alvaro-H, C., P. Robert 2020. Joints in random forests. Conference on Neural Information Processing Systems. Vancouver, Canada: 1–565. doi: 10.48550/arXiv.2006.14937.
  • Bassel, Z., K. Ilya, and M. Yuri. 2021. PFA-GAN: Pose face augmentation based on generative adversarial network 425–40. doi: 10.15388/21-INFOR443.
  • Changxing, D., and T. Dacheng. 2017. Pose-invariant face recognition with homography-based normalization. Pattern Recognition Journal 66:144–52. doi:10.1016/j.patcog.2016.11.024.
  • Chao, Y., W. Ziqi, M. Shiwen 2022. Rfpose-GAN: Data augmentation for RFID based 3D human pose tracking. IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). Cagliari, Italy: 1–4. DOI: 10.1109/RFID-TA54958.2022.9924133.
  • Christian, L., T. Lucas, H. Ferenc, C. Jose, C. Andrew, A. Alejandro, A. Andrew, T. Alykhan, T. Johannes, W. Zehan, S. Wenzhe 2017. Photo-realistic single image super-resolution using a generative adversarial network. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). HI, USA: 105–14. doi: 10.1109/CVPR.2017.19.
  • Duc My, V., N. Duc Manh, L. Thao Phuong, and L. Sang-Woong. 2021. HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs 225–50. doi: 10.1016/j.ins.2021.04.045.
  • Eric, R. -C., Z. -L. Connor, A. -C. Matthew, N. Koki, P. Boxiao, M. Shalini De, G. Orazio, G. Leonidas, T. Jonathan, K. Sameh, K. Tero, W. Gordon 2022. Efficient geometry-aware 3D generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 16123–33. 10.48550/arXiv.2112.07945.
  • Fariborz, T., T. Veeru, D. Jeremy, C. -V. Matthew, and M. -N. Nasser. 2021. Profile to frontal face recognition in the wild using coupled conditional generative adversarial network 149–61. doi: 10.48550/arXiv.2107.13742.
  • FEI2005-2006Artificial intelligence laboratory of FEISão Bernardo do Campo, Brazildoihttps://fei.edu.br/~cet/facedatabase.html
  • Ian, J. G., P. -A. Jean, M. Mehdi, X. Bing, W. -F. David, O. Sherjil, C. Aaron, B. Yoshua. 2014. Generative adversarial networks. International Conference on Neural Information Processing Systems: 1–9. doi: 10.48550/arXiv.1406.2661.
  • Junbo, Z., M. Michael, L. Yann 2016. Energy-based generative adversarial network. The 5th International Conference on Learning Representations: 1–17 doi: 10.48550/arXiv.1609.03126.
  • Junho, Y., J. Heechul, Y. ByungIn, C. Changkyu, P. Dusik, K. Junmo 2015. Rotating your face using multi-task deep neural network. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: 676–84. doi: 10.1109/CVPR.2015.7298667.
  • Kaipeng, Z., Z. Zhanpeng, L. Zhifeng, Q. Yu 2016. Joint face detection and alignment using multi-task cascaded convolutional networks. Journal of IEEE Signal Processing Letters: 1499–503. doi: 10.1109/LSP.2016.2603342.
  • Luan, T., Y. Xi, L. Xiaoming 2017. Disentangled representation learning gan for pose-invariant face recognition. IEEE Conference on Computer Vision and Pattern Recognition, (CVPR). Honolulu, USA: 1415–24. doi: 10.1109/CVPR.2017.141.
  • Mahmood, A., H. Yea-Shuan, and C. Yi-An. 2022. 2D facial landmark localization method for multi-view face synthesis image using a two-pathway generative adversarial network approach. Journal of PeerJ Computer Science 1–28. doi:10.7717/peerj-cs.897.
  • Martin, A., C. Soumith, and B. Léon. 2017. Wasserstein GAN. 1–31. doi:10.48550/arXiv.1701.07875.
  • Ma, R., Y. Xiao, T. Uno, L. Ma, K. Khorasani. 2021. A new facial expression recognition system using decision tree and deep neural networks. IEEE 6th International Conference on Signal and Image Processing (ICSIP). Nanjing, China: 49–54. doi: 10.1109/ICSIP52628.2021.9688871.
  • Mehdi, M., and O. Simon. 2014. Conditional generative adversarial nets 676–84. doi: 10.48550/arXiv.1411.1784.
  • Ngoc-Trung, T., T. Viet-Hung, N. Ngoc-Bao, N. Trung-Kien, C. Ngai-Man 2021. On data augmentation for GAN training. IEEE Transactions on Image Processing: 1882–97. doi: 10.1109/TIP.2021.3049346.
  • Nitish, S., H. Geoffrey, K. Alex, S. Ilya, S. Ruslan 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research: 1929–85. doi: 10.5555/2627435.2670313.
  • Omar, E., A. Noor, A. Somaya, and K. Fouad. 2022. Pose-invariant face recognition with multitask cascade networks. Journal of Neural Computing and Applications 34:6039–52. doi:10.1007/s00521-021-06690-4.
  • Peter, K., F. Madalina, C. Antonio, R. Samuel 2015. Deep neural decision forests. IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:1467–75. doi: 10.1109/ICCV.2015.172.
  • Puja, P., G. Vinit Kumar 2020. Feature descriptors for face recognition. Conference. The IEEE 17th India Council International Conference (INDICON): 1–4. doi: 10.1109/INDICON49873.2020.9342424.
  • Qingyan, D., Z. Lei, Z. Yan, and G. Xinbo. 2023. PSGAN: Revisit the binary discriminator and an alternative for face frontalization. Journal of Neurocomputing 518:360–72. doi:10.1016/j.neucom.2022.11.033.
  • Ralph, M., C. Jeffrey, K. Takeo, B. Simon, and S. Baker. 2010. Multi-PIE. Image and Vision Computing 28:ls. 5. 1–23. doi:10.1016/j.imavis.2009.08.002.
  • Rich, C., N. -M. Alexandru 2006. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning, Pittsburgh, PA, USA: 161–68. doi: 10.1145/1143844.1143865.
  • Rui, H., Z. Shu, L. Tianyu, H. Ran 2017. Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: IEEE International Conference on Computer Vision (ICCV). Venice, Italy: 2439–48. doi: 10.1109/ICCV.2017.267.
  • Samuel Rota, B., K. Peter 2014. Neural decision forests for semantic image labelling. IEEE Conference on Computer Vision and Pattern Recognition: Columbus, OH, USA. 1–7. doi: 10.1109/CVPR.2014.18.
  • Shuhui, J., M. Haiyi, D. Zhengming, and F. Yun. 2020. Deep decision tree transfer boosting. IEEE Transactions on Neural Networks and Learning Systems 31 (2):383–95. doi:10.1109/TNNLS.2019.2901273.
  • Sreerama, K. -M., K. Simon, and S. Steven. 1994. A system for induction of oblique decision trees 1–32. doi: 10.1613/jair.63.
  • Subhajit, C., H. Debapriya, B. Yung-Cheol, and K. Yong-Woon. 2022. Enhancement of image classification using transfer learning and GAN-based synthetic data augmentation 1–16. doi: 10.3390/math10091541.
  • Tal, H., H. Shai, P. Eran, E. Roee 2015. Effective face frontalization in unconstrained images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: 1–10. doi: 10.1109/CVPR.2015.7299058.
  • Tero, K., A. Miika, L. Samuli, H. Erik, H. Janne, L. Jaakko, L. Jaakko 2021. Alias-free generative adversarial networks. Advances in Neural Information Processing Systems. The 35th Conference on Neural Information Processing Systems: 1–12 doi: 10.48550/arXiv.2106.12423.
  • Tian, Y., X. Peng, L. Zhao, S. Zhang, D. -N. Metaxas 2018. CR-GAN: Learning complete representations for multi-view generation. IJCAI International Joint Conference on Artificial Intelligence: 1–7. doi: 10.48550/arXiv.1806.11191.
  • Tongyu, L., F. Ju, L. Yinqing, T. Nan, L. Guoliang, and D. Xiaoyong. 2021. Adaptive data augmentation for supervised learning over missing data. Proceedings of the VLDB Endowment 14 (7):1–13. doi:10.14778/3450980.3450989.
  • Wen, G., B. -C. Senior, S. Shiguang, C. Xilin, Z. Delong, Z. Xiaohua, and Z. Debin. 2009. The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Transactions on Systems, Man and Cybernetics Part A, Systems and Humans 38 (1):149–61. doi:10.1109/TSMCA.2007.909557.
  • Xiaoguang, T., Z. Jian, L. Qiankun, A. Wenjie, G. Guodong, L. Zhifeng, L. Wei, and F. Jiashi. 2021. Joint face image restoration and frontalization for recognition. IEEE Transactions on Circuits and Systems for Video Technology 32 (3):1–14. doi:10.1109/TCSVT.2021.3078517.
  • Xiaoguang, T., G. Jingjing, X. Mei, Q. Jin, and M. Zheng. 2017. Illumination normalization based on correction of large-scale components for face recognition. Journal of Neurocomputing 266:465–76. doi:10.1016/j.neucom.2017.05.055.
  • Xi, Y., Y. Xiang, S. Kihyuk, L. Xiaoming, C. Manmohan 2017. Towards large-pose face frontalization in the wild. IEEE International Conference on Computer Vision (ICCV). Venice, Italy: 1–10. doi: 10.1109/ICCV.2017.430.
  • Yanfei, L., and C. Junhua. 2020. Unsupervised face frontalization for pose-invariant face recognition. Image and Vision Computing 106:1–9. doi:10.1016/j.imavis.2020.104093.
  • Yan, Z., A. Gil, and D. Tom. 2018. Generative adversarial forests for better conditioned adversarial learning 1–17. doi: 10.1080/1805.05185.
  • Yan, Z., A. Gil, D. Tom 2021. Improved training of generative adversarial networks using decision forests. IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: 3492–501. doi: 10.1109/WACV48630.2021.00353.
  • Yani, I., R. Duncan, Z. Darko, K. Peter, S. Jamie, B. Matthew, and C. Antonio. 2016. Decision forests, convolutional networks and the models in-between. Computer Vision and Pattern Recognition 1–9. doi:10.48550/arXiv.1603.01250.
  • Yi, Z., F. Keren, H. Cong, and C. Peng. 2021. Identity-and-pose-guided generative adversarial network for face rotation. Journal of Neurocomputing 33–47:33–47. doi:10.1016/j.neucom.2021.04.007.
  • Yongxin, Y., G. Irene, and H. Timothy. 2018. Deep Neural Decision Tree: 1467–1475. doi:10.1109/1806.06988.
  • Young, H., K. Byung-Gyu, and R. Partha-Pratim. 2021. Face generation algorithm from multi-view images based on generative frontal adversarial network. Journal of Multimedia Information System 8 (2):85–92. doi:10.33851/JMIS.2021.8.2.85.
  • Yu, Y., J. Songyao, R. Joseph, F. Yun 2020. Dual-attention GAN for large-pose face frontalization. IEEE International Conference on Automatic Face and Gesture Recognition. Buenos Aires, Argentina: 1–8. doi: 10.1109/FG47880.2020.00004.
  • Zhenyao, Z., L. Ping, W. Xiaogang, and T. Xiaoou. 2014. Multi-view perceptron: A deep model for learning face identity and view representations. Advances in Neural Information Processing Systems 217–25.
  • Ziyi, S., L. Wei-Sheng, X. Tingfa, K. Jan, Y. Ming-Hsuan 2018. Deep semantic face deblurring. IEEE/CVF Conference of Compute Vision and Pattern Recognition. Salt Lake City, UT, USA: 8260–69. doi: 10.1109/CVPR.2018.00862.