2,902
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Paddy Yield Prediction in Tamilnadu Delta Region Using MLR-LSTM Model

&
Article: 2175113 | Received 03 Nov 2022, Accepted 27 Jan 2023, Published online: 10 Feb 2023

References

  • Anothai, J., C. M. T. Soler, A. Green, T. J. Trout, and G. Hoogenboom. 2013. Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. Agricultural and Forest Meteorology 176:64–583. doi:10.1016/j.agrformet.2013.03.001.
  • Araya, A., G. Hoogenboom, E. Luedeling, K. M. Hadgu, I. Kisekka, and L. G. Martorano. 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology 214-215:252–65. doi:10.1016/j.agrformet.2015.08.259.
  • Ashapure, A., J. Jung, A. Chang, S. Oh, J. Yeom, M. Maeda, A. Maeda, N. Dube, J. Landivar, S. Hague, et al. 2020. Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. Isprs Journal of Photogrammetry and Remote Sensing 169:180–94. doi:10.1016/j.isprsjprs.2020.09.015.
  • Basso, B., D. Cammarano, and E. Carfagna, 2013. Review of crop yield forecasting methods and early warning systems. In Proceedings of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics (pp. 15–31). 10.1017/CBO9781107415324.004.
  • Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J. W. Jones. 2001. Spatial validation of crop models for precision agriculture. Agricultural systems 68 (2):97–112. doi:https://doi.org/10.1016/S0308-521X(00)00063-9.
  • Burke, M., and D. B. Lobell. 2017. Satellite-based assessment of yield variation and its determinants in smallholder African systems. PNAS Agricultural Sciences 114 (9):2189–94. doi:10.1073/pnas.1616919114.
  • Chen, C. -F., S. -W. Huang, N. -T. Son, and L. -Y. Chang. 2011. Mapping double-cropped irrigated rice fields in Taiwan using time-series satellite pour I ‘observation De La terre data. Journal of Applied Remote Sensing 5 (1):053528. doi:10.1117/1.3595276.
  • Chou, T. Y., T. C. Lei, and H. H. Chen. 2006. “Application of boosting to improve image image classification accuracy in rice parcel with decision tree”. Paper presented at the ACRS.
  • Cunha, R. L. F., B. Silva, and M. A. S. Netto, 2018. A scalable machine learning system for preseason agriculture yield forecast. In proceeding of IEEE 14th International Conference on e-Science (e-Science) . 423–30. 10.1109/eScience.2018.00131.
  • Drummond, S. T., K. A. Sudduth, A. Joshi, S. J. Birrell, and N. R. Kitchen. 2003. Statistical and neural methods for site-specific yield prediction. Trans American Society of Agricultural and Biological Engineers 46 (1):5–14. doi:10.13031/2013.12541.
  • Edreira, J. I. R., and M. E. Otegui. 2012. Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research 130:87–98. doi:10.1016/j.fcr.2012.02.009.
  • Fang, H., S. Liang, G. Hoogenboom, J. Teasdale, and M. Cavigelli. 2008. Corn yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. International Journal of Remote Sensing 29 (10):3011–32. doi:10.1080/01431160701408386.
  • Fieuzal, R., C. M. Sicre, and F. Baup. 2017. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation 57:14–23. doi:10.1016/j.jag.2016.12.011.
  • Government of India, Department of Agriculture & Farmers Welfare Ministry of Agriculture & Farmers Welfare. 2022. Annual Report 2021-2022. Government of India, Krishi Bhawan, New Delhi. Accessed February 08, 2023. https://agricoop.nic.in/Documents/annual-report-2021-22.pdf
  • Hund, L., B. Schroeder, K. Rumsey, and G. Huerta. 2018. Distinguishing between model- and data-driven inferences for high reliability statistical predictions. Reliability Engineering & System Safety 180:201–10. doi:10.1016/j.ress.2018.07.017.
  • Ji, B., Y. Sun, S. Yang, and J. Wan. 2007. Artificial neural networks for rice yield prediction in mountainous regions. The Journal of Agricultural Science 145 (3):249–61. doi:10.1017/S0021859606006691.
  • Jones, J. W., J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. Charles, J. Godfray, M. Herrero, R. E. Howitt, et al. 2016. Brief history of agricultural systems modeling. Agricultural systems 155:240–54. doi:10.1016/j.agsy.2016.05.014.
  • Kamilaris, A., A. Kartakoullis, and F. X. Prenafeta-Boldú. 2017. A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture 143:23–37. doi:10.1016/j.compag.2017.09.037.
  • Kamilaris, A., and F. X. Prenafeta-Boldu. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147:70–90. doi:10.1016/j.compag.2018.02.016.
  • Kotsiantis, S. B., I. D. Zaharakis, and P. E. Pintelas. 2006. Machine learning: A review of classification and combining techniques. Artificial Intelligence Review 26:159–90. doi:10.1007/s10462-007-9052-3.
  • Kuo, Y., H. Z. Li, and D. Kifer, 2018. Detecting outliers in data with correlated measures. In proceeding of 2018 ACM Conference on Information and Knowledge Management (CIKM’18), pp. 22–26. 10.1145/3269206.3271798.
  • Kuwata, K., and R. Shibasaki. 2016. Estimating corn yield in the United States with MODIS EVI and machine learning methods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 8 (3):131–36. doi:10.5194/isprs-annals-III-8-131-2016.
  • Leroux, L., M. Castets, C. Baron, M. J. Escorihuela, A. B´egu´e, and S. Lo. 2019. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. European Journal of Agronomy 108:11–26. doi:10.1016/j.eja.2019.04.007.
  • Lillo-Saavedra, M. 2022. Early estimation of tomato yield by decision tree ensembles. Agriculture (MDPI) 12 (10):1655. doi:10.3390/agriculture12101655.
  • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer. 2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest Science 344 (6183):516–19. doi:10.1126/science.1251423.
  • Lokers, R., R. Knapen, S. Janssen, Y. V. Randen, and J. Jansen. 2016. Analysis of big data technologies for use in agro-environmental science. Environmental Modelling & Software 84:494–504. doi:10.1016/j.envsoft.2016.07.017.
  • Oikonomidis, A., C. Catal, and A. Kassahun. 2022. Hybrid deep learning-based models for crop yield prediction. Applied Artificial Intelligence 36 (1):2031822. doi:10.1080/08839514.2022.2031823.
  • Prasad, A. K., L. Chai, R. P. Singh, and M. Kafatos. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation 8 (1):26–33. doi:10.1016/j.jag.2005.06.002.
  • Sun, J. 2019. County-level soybean yield prediction using deep CNN-LSTM model. Sensors (MDPI) 19 (20):4363. doi:10.3390/s19204363.
  • van Klompenburg, T., A. Kassahun, and C. Catal. 2020. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177:105709. doi:10.1016/j.compag.2020.105709.
  • Xing, L., L. Li, J. Gong, C. Ren, J. Liu, and H. Chen. 2018. Daily soil temperatures predictions for various climates in United-States using data-driven model. Energy 160:430–40. doi:10.1016/j.energy.2018.07.004.
  • Xu, X., P. Gao, X. Zhu, W. Guo, J. Ding, C. Li, M. Zhu, and X. Wu. 2019. Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecological indicators 101:943–53. doi:10.1016/j.ecolind.2019.01.059ecolind.2019.01.059,https://pib.gov.in/PressReleasePage.aspx?PRID=1741942