1,257
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Predicting education building occupants’ thermal sensation through CatBoost-DF algorithm

, , , &
Article: 2175115 | Received 07 Oct 2022, Accepted 27 Jan 2023, Published online: 08 Feb 2023

References

  • Albatayneh, A., D. Alterman, A. Page, and B. Moghtaderi. 2018. The impact of the thermal comfort models on the prediction of building energy consumption. Sustainability 10 (10):3609. doi:10.3390/su10103609.
  • Aritan, A. E. 2019. Investigation of thermal comfort conditions in a travertine processing plant by using thermal comfort indices. International Journal of Environmental Science and Technology 16 (9):5285–449. doi:10.1007/s13762-019-02378-4.
  • Bhati, N. S., and M. Khari. 2021. A NEw intrusion detection scheme using catboost classifier. In Forthcoming networks and sustainability in the IoT Era, ed. Enver Ever and Fadi Al-Turjman, 169–76. Cham: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications EngineeringSpringer International Publishing. doi:10.1007/978-3-030-69431-9_13.
  • Chaudhuri, T., Y. Chai Soh, L. Hua, and L. Xie. 2017. Machine learning based prediction of thermal comfort in buildings of equatorial singapore. In 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), 72–77. doi:10.1109/ICSGSC.2017.8038552.
  • Chaudhuri, T., Y. Chai Soh, L. Hua, and L. Xie. 2019. A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings. Applied Energy 248 (August):44–53. doi:10.1016/j.apenergy.2019.04.065.
  • Chaudhuri, T., D. Zhai, Y. Chai Soh, L. Hua, and L. Xie. 2018. Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology. Energy and Buildings 166 (May):391–406. doi:10.1016/j.enbuild.2018.02.035.
  • Chen, X., L. Gao, P. Xue, J. Du, and J. Liu. (2020). Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area. Science of The Total Environment 749:141520. doi:10.1016/j.scitotenv.2020.141520.
  • Choi, J.H., and V. Loftness. 2012. Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Building and Environment 58 (December):258–69. doi:10.1016/j.buildenv.2012.07.003.
  • Cosma, A. C., and R. Simha. 2019. Using the contrast within a single face heat map to assess personal thermal comfort. Building and Environment 160 (August):106163. doi:10.1016/j.buildenv.2019.106163.
  • de Dear, R., J. Xiong, J. Kim, and B. Cao. 2020. A review of adaptive thermal comfort research since 1998. Energy and Buildings 214 (May):109893. doi:10.1016/j.enbuild.2020.109893.
  • Dorogush, A. V., V. Ershov, and A. Gulin. 2018. CatBoost: GRadient boosting with categorical features support. arXiv. doi:10.48550/arXiv.1810.11363.
  • Faghihimani, M. M., and S. Abdolkarim Hosseini. 2022, July. Study on thermal comfort of low-sweat and high-sweat young men based on heart rate variability analysis under different clothing. In Indoor and built environment, 1420326X221105628. SAGE Publications Ltd STM. doi:10.1177/1420326X221105628.
  • Fanger, P. O. 1970. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press. https://www.cabdirect.org/cabdirect/abstract/19722700268.
  • Fard, Q., Z. S. Z. Zahra, and S. Sadat Korsavi. 2022. Application of machine learning in thermal comfort studies: A review of methods, performance and challenges. Energy and Buildings 256 (February):111771. doi:10.1016/j.enbuild.2021.111771.
  • Farhan, A. A., K. Pattipati, B. Wang, and P. Luh. 2015. Predicting individual thermal comfort using machine learning algorithms. In 2015 IEEE International Conference on Automation Science and Engineering (CASE), 708–13. doi:10.1109/CoASE.2015.7294164.
  • Gao, G., J. Li, and Y. Wen. 2020. DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning. IEEE Internet of Things Journal 7(9):8472–8484. doi:10.1109/JIOT.2020.2992117.
  • Gilani, S.I.U.H., M. Hammad Khan, and M. Ali. 2016. Revisiting fanger’s thermal comfort model using mean blood pressure as a bio-marker: An experimental investigation. Applied Thermal Engineering 109 (October):35–43. doi:10.1016/j.applthermaleng.2016.08.050.
  • Hoof, J. 2008. Forty years of fanger’s model of thermal comfort: comfort for all? Indoor Air 18 (July):182–201. doi:10.1111/j.1600-0668.2007.00516.x.
  • Hu, W., Y. Wen, K. Guan, G. Jin, and K. Jet Tseng. 2018. ITCM: Toward learning-based thermal comfort modeling via pervasive sensing for smart buildings. IEEE Internet of Things Journal 5 (5):4164–77. doi:10.1109/JIOT.2018.2861831.
  • ISO 7726:1998. 2022. ISO. Accessed February 13. Ergonomics of the thermal environment — Instruments for measuring physical quantities.
  • Jiang, L., and R. Yao. 2016. Modelling personal thermal sensations using c-support vector classification (C-SVC) algorithm. Building and Environment 99 (April):98–106. doi:10.1016/j.buildenv.2016.01.022.
  • Jung, W., F. Jazizadeh, and T E. Diller. (2019). Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling. Sensors 19(17):3691. doi:10.3390/s19173691.
  • Katić, K., L. Rongling, and W. Zeiler. 2020. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants’ heating behavior. Applied Ergonomics 85 (May):103078. doi:10.1016/j.apergo.2020.103078.
  • Kim, J., S. Schiavon, and G. Brager. 2018. Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment 132 (March):114–24. doi:10.1016/j.buildenv.2018.01.023.
  • Lee, Y. Y., M. Fadhil Md Din, K. Iwao, Y. Huei Lee, and N. Anting. 2021. Impact of thermal behaviour of different environmental conditions on ambient environment and thermal discomfort in Malaysia. In Indoor and built environment, vol. 30, 4–534 520–534. SAGE Publications Ltd STM. doi:10.1177/1420326X19897956.
  • Liu, F. T., K. M. Ting, Y. Yu, and Z. H. Zhou. 2008. Spectrum of variable-random trees. The Journal of Artificial Intelligence Research 32 (May):355–84. doi:10.1613/jair.2470.
  • Lopez, G., Y. Kawahara, Y. Suzuki, M. Takahashi, H. Takahashi, and M. Wada. 2016. Effect of direct neck cooling on psychological and physiological state in summer heat environment. Mechanical Engineering Journal 3 (1):15–00537. doi:10.1299/mej.15-00537.
  • Ma, N., D. Aviv, H. Guo, and W. W. Braham. 2021. Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality. Renewable and Sustainable Energy Reviews 135 (January):110436. doi:10.1016/j.rser.2020.110436.
  • Moon, J. W., S.H. Yoon, and S. Kim. 2013. Development of an artificial neural network model based thermal control logic for double skin envelopes in winter. Building and Environment 61 (March):149–59. doi:10.1016/j.buildenv.2012.12.010.
  • Mui, K., T. Tsang, and L. Wong. (2020). Bayesian updates for indoor thermal comfort models. Journal of Building Engineering 29:101117. doi:10.1016/j.jobe.2019.101117.
  • Nan, M., L. Chen, H. Jian, P. Perdikaris, and W. W. Braham. 2021. Adaptive behavior and different thermal experiences of real people: A bayesian neural network approach to thermal preference prediction and classification. Building and Environment 198 (July):107875. doi:10.1016/j.buildenv.2021.107875.
  • Nkurikiyeyezu, K., A. Yokokubo, and G. Lopez. 2019. Affect-aware thermal comfort provision in intelligent buildings. In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 331–36. doi:10.1109/ACIIW.2019.8925184.
  • Ole Fanger, P., and J. Toftum. 2002. Extension of the PMV Model to non-air-conditioned buildings in warm climates. Energy and Buildings 34 (6):533–36. Special Issue on Thermal Comfort Standards. doi:10.1016/S0378-7788(02)00003-8.
  • Prokhorenkova, L., G. Gusev, A. Vorobev, A. Veronika Dorogush, and A. Gulin. 2019. CatBoost: Unbiased boosting with categorical features. ArXiv:1706.09516 [Cs], January. http://arxiv.org/abs/1706.09516.
  • Ren, J., Z. Wang, Y. Pang, and Y. Yuan. 2022. Genetic algorithm-assisted an improved adaboost double-layer for oil temperature prediction of TBM. Advanced Engineering Informatics 52 (April):101563. doi:10.1016/j.aei.2022.101563.
  • Somu, N., A. Sriram, A. Kowli, and K. Ramamritham. 2021. A hybrid deep transfer learning strategy for thermal comfort prediction in buildings. Building and Environment 204 (October):108133. doi:10.1016/j.buildenv.2021.108133.
  • Wolpert, D. H., and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1 (1):67–82. doi:10.1109/4235.585893.
  • Wu, Y., H. Liu, L. Baizhan, R. Kosonen, S. Wei, J. Jokisalo, and Y. Cheng. 2021. Individual thermal comfort prediction using classification tree model based on physiological parameters and thermal history in winter. Building Simulation 14 (6):1651–65. doi:10.1007/s12273-020-0750-y.
  • Wu, Z., L. Nianping, J. Peng, H. Cui, P. Liu, L. Hongqiang, and L. Xiwang. 2018. Using an ensemble machine learning methodology-bagging to predict occupants’ thermal comfort in buildings. Energy and Buildings 173 (August):117–27. doi:10.1016/j.enbuild.2018.05.031.
  • Xie, J., L. Haoyang, L. Chuting, J. Zhang, and M. Luo. 2020. Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings 226 (November):110392. doi:10.1016/j.enbuild.2020.110392.
  • Xiong, L., and Y. Yao. 2021. Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Building and Environment 202:108026. doi:10.1016/j.buildenv.2021.108026.
  • Yang, B., L. Xiaojing, Y. Hou, A. Meier, X. Cheng, J.H. Choi, F. Wang, H. Wang, A. Wagner, D. Yan, et al. 2020. Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -a review. Energy and Buildings 224 (October):110261. doi:10.1016/j.enbuild.2020.110261.
  • Yao, R., L. Baizhan, and J. Liu. 2009. A theoretical adaptive model of thermal comfort – adaptive predicted mean vote (APMV). Building and Environment 44 (10):2089–96. doi:10.1016/j.buildenv.2009.02.014.
  • Yuan, Y., J. Ren, S. Wang, Z. Wang, M. Xiaokai, and W. Zhao. 2022. Alpine skiing optimization: a new bio-inspired optimization algorithm. Advances in Engineering Software 170 (August):103158. doi:10.1016/j.advengsoft.2022.103158.
  • Yuan, Y., J. Ren, Z. Wang, and M. Xiaokai. March, 2022. Dynamic analysis of the rigid-flexible excavator mechanism based on virtual prototype. Facta Universitatis Series: Mechanical Engineering 20 (2):341. http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/8029
  • Yuan, Y., M. Xiaokai, X. Shao, J. Ren, Y. Zhao, and Z. Wang. 2022. Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm. Applied Soft Computing 123 (July):108947. doi:10.1016/j.asoc.2022.108947.
  • Zhai, D., T. Chaudhuri, Y. Chai Soh, O. Xianhua, and C. Jiang. 2018. Improvement of Energy Efficiency of Markov ACMV Systems Based on PTS Information of Occupants. In 2018 International Joint Conference on Neural Networks (IJCNN), 1–7. doi:10.1109/IJCNN.2018.8489214.
  • Zhang, J., X. Zhou, S. Lei, and M. Luo. 2022. Energy and comfort performance of occupant-centric air conditioning strategy in office buildings with personal comfort devices. Building Simulation 15 (5):899–911. doi:10.1007/s12273-021-0852-1.
  • Zhou, Z.H. 2012. Ensemble methods: Foundations and algorithms. Chapman & Hall/CRC machine learning & pattern recognition series. Boca Raton, FL: Taylor & Francis.
  • Zhou, Z.H., and J. Feng. 2017. Deep forest: Towards an alternative to deep neural networks. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 3553–59. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2017/497.
  • Zhou, Z.H., and J. Feng. 2020. Deep forest. ArXiv:1702.08835 [Cs, Stat], July. http://arxiv.org/abs/1702.08835.