1,050
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DR-CIML: Few-shot Object Detection via Base Data Resampling and Cross-iteration Metric Learning

, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2175116 | Received 20 Oct 2022, Accepted 27 Jan 2023, Published online: 09 Feb 2023

References

  • Aganian, D., M. Eisenbach, J. Wagner, D. Seichter, and H. M. Gross 2021. Revisiting loss functions for person re-identification. In International Conference on Artificial Neural Networks (pp. 30–511). Springer, Cham. doi: 10.1007/978-3-030-86383-8_3.
  • Aherne, F. J., N. A. Thacker, and P. I. Rockett. 1998. The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34 (4):363–68.
  • Bochkovskiy, A., C. Y. Wang, and H. Y. M. Liao. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004 10934. doi:10.48550/arXiv.2004.10934.
  • Chen, H., Y. Wang, G. Wang, and Y. Qiao. 2018. Lstd: A low-shot transfer detector for object detection. Proceedings of the AAAI Conference on Artificial Intelligence 32 (1). doi:10.1609/aaai.v32i1.11716.
  • Deng, J., W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–55). Ieee. doi: 10.1109/CVPR.2009.5206848.
  • Elgammal, A., R. Duraiswami, and L. S. Davis 2003. Probabilistic tracking in joint feature-spatial spaces. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings. (Vol. 1, pp. I–I). IEEE. doi: 10.1109/CVPR.2003.1211432.
  • Everingham, M., S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. 2015. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision 111 (1):98–136. doi:10.1007/s11263-014-0733-5.
  • Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. 2010. The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88 (2):303–38. doi:10.1007/s11263-009-0275-4.
  • Fan, Z., Y. Ma, Z. Li, and J. Sun 2021. Generalized few-shot object detection without forgetting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4527–36). doi: 10.1109/CVPR46437.2021.00450.
  • Finn, C., P. Abbeel, and S. Levine 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International conference on machine learning (pp. 1126–35). PMLR.
  • Han, G., Y. He, S. Huang, J. Ma, and S. F. Chang 2021. Query adaptive few-shot object detection with heterogeneous graph convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3263–72). doi: 10.1109/ICCV48922.2021.00325.
  • Han, G., S. Huang, J. Ma, Y. He, and S. F. Chang 2022. Meta faster r-cnn: Towards accurate few-shot object detection with attentive feature alignment. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 1, pp. 780–89). doi: 10.1609/aaai.v36i1.19959.
  • He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–78). doi: 10.1109/CVPR.2016.90.
  • Hu, H., S. Bai, A. Li, J. Cui, and L. Wang 2021. Dense relation distillation with context-aware aggregation for few-shot object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10185–94). doi: 10.1109/CVPR46437.2021.01005.
  • Kang, B., Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell 2019. Few-shot object detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 8420–29). doi: 10.1109/ICCV.2019.00851.
  • Karlinsky, L., J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, and A. M. Bronstein 2019. Repmet: Representative-based metric learning for classification and few-shot object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5197–206). doi: 10.1109/CVPR.2019.00534.
  • Katzmann, A., O. Taubmann, S. Ahmad, A. Mühlberg, M. Sühling, and H. M. Groß. 2021. Explaining clinical decision support systems in medical imaging using cycle-consistent activation maximization. Neurocomputing 458:141–56. doi:10.1016/j.neucom.2021.05.081.
  • Kaya, M., and H. Ş. Bilge. 2019. Deep metric learning: A survey. Symmetry 11 (9):1066. doi:10.3390/sym11091066.
  • Khosla, P., P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, and D. Krishnan. 2020. Supervised contrastive learning. Advances in Neural Information Processing Systems 33:18661–73. doi:10.48550/arXiv.2004.11362.
  • Köhler, M., M. Eisenbach, and H. M. Gross. 2021. Few-shot object detection: A Survey. arXiv preprint arXiv:2112 11699. doi:10.48550/arXiv.2112.11699.
  • Li, A., and Z. Li 2021. Transformation invariant few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3094–102). doi: 10.1109/CVPR46437.2021.00311.
  • Lin, T. Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, and C. L. Zitnick 2014. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740–55). Springer, Cham. doi: 10.1007/978-3-319-10602-1_48.
  • Li, X., L. Zhang, Y. P. Chen, Y. W. Tai, and C. K. Tang. 2020. One-shot object detection without fine-tuning. arXiv preprint arXiv:2005 03819. doi:10.48550/arXiv.2005.03819.
  • Li, Y., H. Zhu, Y. Cheng, W. Wang, C. S. Teo, C. Xiang, and T. H. Lee 2021. Few-shot object detection via classification refinement and distractor retreatment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 15395–403). doi: 10.1109/CVPR46437.2021.01514.
  • Lu, J., P. Gong, J. Ye, and C. Zhang. 2020. Learning from very few samples: A survey. arXiv preprint arXiv:2009 02653. doi:10.48550/arXiv.2009.02653.
  • Mannocci, L., S. Villon, M. Chaumont, N. Guellati, N. Mouquet, C. Iovan, and D. Mouillot. 2022. Leveraging social media and deep learning to detect rare megafauna in video surveys. Conservation Biology 36 (1):e13798. doi:10.1111/cobi.13798.
  • Matusita, K. 1955. Decision rules, based on the distance, for problems of fit, two samples, and estimation. The Annals of Mathematical Statisticss 26 (4):631–40. doi:10.1214/aoms/1177728422.
  • Michaelis, C., I. Ustyuzhaninov, M. Bethge, and A. S. Ecker. 2018. One-shot instance segmentation. arXiv preprint arXiv:1811 11507. doi:10.48550/arXiv.1811.11507.
  • Nichol, A., J. Achiam, and J. Schulman. 2018. On first-order meta-learning algorithms. arXiv preprint arXiv:1803 02999. doi:10.48550/arXiv.1803.02999.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 28. doi:10.1109/TPAMI.2016.2577031.
  • Samuelson, L. K., and L. B. Smith. 2005. They call it like they see it: Spontaneous naming and attention to shape. Developmental science 8 (2):182–98. doi:10.1111/j.1467-7687.2005.00405.x.
  • Schroff, F., D. Kalenichenko, and J. Philbin 2015. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815–23). doi: 10.1109/CVPR.2015.7298682.
  • Simonyan, K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409 1556. doi:10.48550/arXiv.1409.1556.
  • Sun, Y., Y. Chen, X. Wang, and X. Tang. 2014. Deep learning face representation by joint identification-verification. Advances in Neural Information Processing Systems 27.
  • Sun, B., B. Li, S. Cai, Y. Yuan, and C. Zhang 2021. Fsce: Few-shot object detection via contrastive proposal encoding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7352–62). doi: 10.1109/CVPR46437.2021.00727.
  • Tan, M., and Q. Le 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105–14). PMLR. doi: 10.48550/arXiv.1905.11946.
  • Tian, Z., C. Shen, H. Chen, and T. He 2019. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9627–36). doi: 10.1109/ICCV.2019.00972.
  • Vinyals, O., C. Blundell, T. Lillicrap, and D. Wierstra. 2016. Matching networks for one shot learning. Advances in Neural Information Processing Systems 29.
  • Wang, X., T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu. 2020. Frustratingly simple few-shot object detection. arXiv preprint arXiv:2003 06957. doi:10.48550/arXiv.2003.06957.
  • Wang, Y. X., D. Ramanan, and M. Hebert 2019. Meta-learning to detect rare objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9925–34). doi: 10.1109/ICCV.2019.01002.
  • Weinberger, K. Q., J. Blitzer, and L. Saul. 2005. An information maximization model of eye movements. Advances in Neural Information Processing Systems 17:18.
  • Weinberger, K. Q., and L. K. Saul. 2009. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research 10 (2).
  • Wu, A., Y. Han, L. Zhu, and Y. Yang 2021. Universal-prototype enhancing for few-shot object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9567–76). doi: 10.1109/ICCV48922.2021.00943.
  • Wu, J., S. Liu, D. Huang, and Y. Wang 2020. Multi-scale positive sample refinement for few-shot object detection. In European conference on computer vision (pp. 456–72). Springer, Cham. doi: 10.1007/978-3-030-58517-4_27.
  • Wu, A., S. Zhao, C. Deng, and W. Liu. 2021. Generalized and discriminative few-shot object detection via SVD-dictionary enhancement. Advances in Neural Information Processing Systems 34:6353–64.
  • Xing, E., M. Jordan, S. J. Russell, and A. Ng. 2002. Distance metric learning with application to clustering with side-information. Advances in Neural Information Processing Systems 15.
  • Yan, X., Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin 2019. Meta r-cnn: Towards general solver for instance-level low-shot learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9577–86). doi: 10.1109/ICCV.2019.00967.
  • Zhang, G., K. Cui, R. Wu, S. Lu, and Y. Tian 2021. Pnpdet: Efficient few-shot detection without forgetting via plug-and-play sub-networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3823–32). doi: 10.1109/WACV48630.2021.00387.
  • Zhang, W., and Y. X. Wang 2021. Hallucination improves few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13008–17). doi: 10.1109/CVPR46437.2021.01281.
  • Zhang, W., Y. X. Wang, and D. A. Forsyth. 2020. Cooperating RPN’s improve few-shot object detection. arXiv preprint arXiv:2011 10142. doi:10.48550/arXiv.2011.10142.
  • Zhuang, F., Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, and Q. He. 2020. A comprehensive survey on transfer learning. Proceedings of the IEEE 109 (1):43–76. doi:10.1109/JPROC.2020.3004555.
  • Zhu, C., F. Chen, U. Ahmed, Z. Shen, and M. Savvides 2021. Semantic relation reasoning for shot-stable few-shot object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8782–91). doi: 10.1109/CVPR46437.2021.00867.