1,493
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Wind Shear Severity in Airport Runway Vicinity using Interpretable TabNet approach and Doppler LiDAR Data

, , &
Article: 2302227 | Received 25 Aug 2023, Accepted 02 Jan 2024, Published online: 10 Jan 2024

References

  • Airport Council International. 2017. World airport traffic forecast 2017–2040 airport council international. Montréal, QC, USA: Airport Council International.
  • Alahmari, F. 2020. A comparison of resampling techniques for medical data using machine learning. Journal of Information & Knowledge Management 19 (1):2040016. doi:10.1142/S021964922040016X.
  • Alkhamisi, A. O., and R. Mehmood. 2020, March. An ensemble machine and deep learning model for risk prediction in aviation systems. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 54–27. IEEE.
  • Arik, S. Ö., and T. Pfister. 2021, May. Tabnet: Attentive interpretable tabular learning. Proceedings of the AAAI Conference on Artificial Intelligence 35(8):6679–87. doi:10.1609/aaai.v35i8.16826.
  • Batista, G. E., R. C. Prati, and M. C. Monard. 2005, September. Balancing strategies and class overlapping. International symposium on intelligent data analysis, 24–35. Berlin Heidelberg: Berlin, Heidelberg: Springer.
  • Ben-Cohen, A., I. Diamant, E. Klang, M. Amitai, and H. Greenspan. 2016. Fully convolutional network for liver segmentation and lesions detection. Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Proceedings 1, 77–85. Athens, Greece: Springer International Publishing. October 21.
  • Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl. 2011. Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems 24.
  • Bergstra, J., and Y. Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13 (2).
  • Borsky, S., and C. Unterberger. 2019. Bad weather and flight delays: The impact of sudden and slow onset weather events. Economics of Transportation 18:10–26. doi:10.1016/j.ecotra.2019.02.002.
  • Cankaya, B., K. Topuz, D. Delen, and A. Glassman. 2023. Evidence-Based Managerial decision-making with machine learning: The case of bayesian inference in aviation incidents. Omega 120:102906. doi:10.1016/j.omega.2023.102906.
  • Chan, P. W. 2006, January. Generation of eddy dissipation rate map at the Hong Kong International Airport based on Doppler LIDAR data. In 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, GA.
  • Chan, P. W. 2012. A significant wind shear event leading to aircraft diversion at the Hong Kong international airport. Meteorological Applications 19 (1):10–16. doi:10.1002/met.242.
  • Chan, P. W. 2017. Severe wind shear at Hong Kong International airport: Climatology and case studies. Meteorological Applications 24 (3):397–403. doi:10.1002/met.1637.
  • Chang, L., G. Xing, H. Yin, L. Fan, R. Zhang, N. Zhao, F. Huang, and J. Ma. 2023. Landslide susceptibility evaluation and interpretability analysis of typical loess areas based on deep learning. Natural Hazards Research 3 (2):155–169. doi:10.1016/j.nhres.2023.02.005.
  • Chan, P. W., and Q. S. Li. 2020. Some observations of low level wind shear at the Hong Kong International Airport in association with tropical cyclones. Meteorological Applications 27 (2):e1898. doi:10.1002/met.1898.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. The Journal of Artificial Intelligence Research 16:321–357. doi:10.1613/jair.953.
  • Chen, T., and C. Guestrin. 2016, August. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, USA, 785–94.
  • Chen, F., H. Peng, P. W. Chan, X. Ma, and X. Zeng. 2020. Assessing the risk of windshear occurrence at HKIA using rare‐event logistic regression. Meteorological Applications 27 (6):e1962. doi:10.1002/met.1962.
  • Choi, S., Y. J. Kim, S. Briceno, and D. Mavris. 2016, September. Prediction of weather-induced airline delays based on machine learning algorithms. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, USA, 1–6. IEEE.
  • Cho, H., Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee. 2020. Basic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networks. Institute of Electrical and Electronics Engineers Access 8:52588–52608. doi:10.1109/ACCESS.2020.2981072.
  • Coburn, J., J. Arnheim, and S. C. Pryor. 2022. Short‐Term forecasting of wind gusts at airports across CONUS using machine learning. Earth & Space Science 9 (12):e2022EA002486. doi:10.1029/2022EA002486.
  • Dhief, I., Z. Wang, M. Liang, S. Alam, M. Schultz, and D. Delahaye. 2020, September. Predicting aircraft landing time in extended-TMA using machine learning methods. In Proceedings of the 9th International Conference for Research in Air Transportation (ICRAT), Tampa, FL, USA, 23–26.
  • Frazier, P. I. 2018. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.
  • Gultepe, I., R. Sharman, P. D. Williams, B. Zhou, G. Ellrod, P. Minnis, S. Trier, S. Griffin, S. Yum, B. Gharabaghi, et al. 2019. A review of high impact weather for aviation meteorology. Pure & Applied Geophysics 176 (5):1869–1921. doi:10.1007/s00024-019-02168-6.
  • Han, H., W. Y. Wang, and B. H. Mao. 2005, August. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing, Berlin, Heidelberg, 878–87. Springer.
  • Hon, K. K., and P. W. Chan. 2022. Historical analysis (2001–2019) of low‐level wind shear at the Hong Kong International Airport. Meteorological Applications 29 (2):e2063. doi:10.1002/met.2063.
  • Khattak, A., P. W. Chan, F. Chen, and H. Peng. 2022. Prediction of a Pilot’s invisible foe: The severe low-level wind shear. Atmosphere 14 (1):37. doi:10.3390/atmos14010037.
  • Khattak, A., P. W. Chan, F. Chen, and H. Peng. 2023a. Assessing wind field characteristics along the airport runway glide slope: An explainable boosting machine-assisted wind tunnel study. Scientific Reports 13 (1):10939. doi:10.1038/s41598-023-36495-5.
  • Khattak, A., P. W. Chan, F. Chen, and H. Peng. 2023b. Time-series prediction of intense wind shear using machine learning algorithms: A case study of Hong Kong International Airport. Atmosphere 14 (2):268. doi:10.3390/atmos14020268.
  • Khattak, A., P. W. Chan, F. Chen, H. Peng, and C. Mongina Matara. 2023. Missed approach, a safety-critical go-around procedure in aviation: Prediction based on machine learning-ensemble imbalance learning. Advances in Meteorology 2023:1–24. doi:10.1155/2023/9119521.
  • Leung, M. Y., W. Zhou, C. M. Shun, and P. W. Chan. 2018. Large-scale circulation control of the occurrence of low-level turbulence at Hong Kong International Airport. Advances in Atmospheric Sciences 35 (4):435–44. doi:10.1007/s00376-017-7118-y.
  • Liu, Z. 2023, February. A new porosity prediction method based on Deep Learning of TabNet Algorithm. In 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 1681–85. IEEE.
  • Liu, J. N., K. M. Kwong, and P. W. Chan. 2012. Chaotic oscillatory-based neural network for wind shear and turbulence forecast with LiDAR data. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (6):1412–23. doi:10.1109/TSMCC.2012.2188284.
  • Lundberg, S. M., and S. I. Lee. 2017. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30.
  • Luo, M., M. Schultz, H. Fricke, B. Desart, F. Herrema, and R. B. Montes. 2021, October. Agent-based simulation for aircraft stand operations to predict ground time using machine learning. In 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, Texas, USA, 1–8. IEEE.
  • McDonnell, K., F. Murphy, B. Sheehan, L. Masello, and G. Castignani. 2023. Deep learning in insurance: Accuracy and model interpretability using TabNet. Expert Systems with Applications 217:119543. doi:10.1016/j.eswa.2023.119543.
  • Mizuno, S., H. Ohba, and K. Ito. 2022. Machine learning-based turbulence-risk prediction method for the safe operation of aircrafts. Journal of Big Data 9 (1):29. doi:10.1186/s40537-022-00584-5.
  • Molnar. C., 2020. Interpretable machine learning. Lulu. com.
  • Nechaj, P., L. Gaál, J. Bartok, O. Vorobyeva, M. Gera, M. Kelemen, and V. Polishchuk. 2019. Monitoring of low-level wind shear by ground-based 3D lidar for increased flight safety, protection of human lives and health. International Journal of Environmental Research and Public Health 16 (22):4584. doi:10.3390/ijerph16224584.
  • Palatnik de Sousa, I., M. Maria Bernardes Rebuzzi Vellasco, and E. Costa da Silva. 2019. Local interpretable model-agnostic explanations for classification of lymph node metastases. Sensors 19 (13):2969. doi:10.3390/s19132969.
  • Pouyanfar, S., S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M. L. Shyu, S. C. Chen, and S. S. Iyengar. 2018. A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR) 51 (5):1–36. doi:10.1145/3234150.
  • Qu, J., T. Zhao, M. Ye, J. Li, and C. Liu. 2020. Flight delay prediction using deep convolutional neural network based on fusion of meteorological data. Neural Processing Letters 52 (2):1461–1484. doi:10.1007/s11063-020-10318-4.
  • Ryan, M., A. H. Saputro, and A. Sopaheluwakan. 2023. Review of low-level wind shear: Detection and prediction. In AIP Conference Proceedings, Palu, Indonesia, vol. 2719. AIP Publishing.
  • Schultz, M., and S. Reitmann. 2019. Machine learning approach to predict aircraft boarding. Transportation Research Part C: Emerging Technologies 98:391–408. doi:10.1016/j.trc.2018.09.007.
  • Shun, C. M., and P. W. Chan. 2008. Applications of an infrared Doppler lidar in detection of wind shear. Journal of Atmospheric and Oceanic Technology 25 (5):637–655. doi:10.1175/2007JTECHA1057.1.
  • Snoek, J., H. Larochelle, and R. P. Adams. 2012. Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25.
  • Stocker, J., K. Johnson, R. Jackson, S. Smith, D. Connolly, D. Carruthers, and P. W. Chan. 2022. Hong Kong Airport wind shear now-casting system development and evaluation. Atmosphere 13 (12):2094. doi:10.3390/atmos13122094.
  • Szeto, K. C., and P. W. Chan, 2006, January. High resolution numerical modelling of windshear episodes at the Hong Kong International Airport. In 12th Conference on Aviation, Range, and Aerospace Meteorology.
  • Thobois, L., J. P. Cariou, and I. Gultepe. 2019. Review of lidar-based applications for aviation weather. Pure & Applied Geophysics 176 (5):1959–1976. doi:10.1007/s00024-018-2058-8.
  • Wicaksono, A. S., and A. A. Supianto. 2018. Hyper parameter optimization using genetic algorithm on machine learning methods for online news popularity prediction. International Journal of Advanced Computer Science & Applications 9 (12). doi:10.14569/IJACSA.2018.091238.
  • Yang, L., P. Li, R. Xue, X. Ma, X. Li, and Z. Wang. 2018, July. Intelligent classification model for railway signal equipment fault based on SMOTE and ensemble learning. IOP Conference Series: Materials Science & Engineering 383 (1):012042. IOP Publishing. doi:10.1088/1757-899X/383/1/012042.
  • Yan, J., T. Xu, Y. Yu, and H. Xu. 2021. Rainfall forecast model based on the tabnet model. Water 13 (9):1272. doi:10.3390/w13091272.
  • Zhang, H., S. Wu, Q. Wang, B. Liu, B. Yin, and X. Zhai. 2019. Airport low-level wind shear lidar observation at Beijing Capital International airport. Infrared Physics & Technology 96:113–122. doi:10.1016/j.infrared.2018.07.033.