279
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy-based deep neural network training optimization for optical coherence tomography imaging

& ORCID Icon
Article: 2355760 | Received 29 Jan 2024, Accepted 17 Apr 2024, Published online: 24 May 2024

References

  • Alqudah, A. M. 2020. AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & Biological Engineering & Computing 58 (1):41–25. doi:10.1007/s11517-019-02066-y
  • Altan, G. 2022. DeepOCT: An explainable deep learning architecture to analyze macular edema on OCT images. Engineering Science and Technology, an International Journal 34:101091. doi:10.1016/j.jestch.2021.101091
  • Apostolopoulos, S., C. Ciller, S. De Zanet, S. Wolf, and R. Sznitman. 2017. RetiNet: Automatic AMD identification in OCT volumetric data. Investigative Ophthalmology & Visual Science 58 (8):387–387.
  • Bai, Y., E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu, and T. Liu. 2021. Understanding and improving early stopping for learning with noisy labels. Advances in Neural Information Processing Systems 34:24392–403.
  • Bonet, D., A. Ortega, J. Ruiz-Hidalgo, and S. Shekkizhar. 2021. Channel-wise early stopping without a validation set via NNK polytope interpolation. arXiv preprint arXiv:2107.12972.
  • Brownlee, J. 2020. Understand the impact of learning rate on neural network performance. Accessed September 3 2021. https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
  • Bu, Y., S. Zou, and V. V. Veeravalli. 2020. Tightening mutual information-based bounds on generalization error. IEEE Journal on Selected Areas in Information Theory 1 (1):121–30. doi:10.1109/JSAIT.2020.2991139
  • Duvenaud, D., D. Maclaurin, and R. Adams. 2016. Early Stopping as Nonparametric Variational Inference. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, ed. A. Gretton and C. C. Robert, 1070–1077. Cadiz, Spain: Proceedings of Machine Learning Research (PMLR).
  • Forouzesh, M., and P. Thiran. 2021. “Disparity between batches as a signal for early stopping.” In Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, 217–32. Springer.
  • Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al. 2018. Recent advances in convolutional neural networks. Pattern Recognition 77:354–77. doi:10.1016/j.patcog.2017.10.013
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, June 26 - July 1, Las Vegas, Nevada, 770–78.
  • Hoffman, J. I. E. 2019. Chapter 25 - analysis of variance. I. One-way. In Basic biostatistics for medical and biomedical practitioners, ed. J. I. E. Hoffman, 391–417. 2nd ed. London: Academic Press.
  • Irsch, K. 2021. Optical principles of OCT. In Albert and Jakobiec’s principles and practice of ophthalmology, ed. Daniel M. Albert, Joan W. Miller, Dimitri T. Azar and Lucy H. Young, 1–14. Springer Nature Switzerland AG: Springer.
  • Janocha, K., and W. M. Czarnecki. 2017. On loss functions for deep neural networks in classification. CoRR abs/1702.05659. http://arxiv.org/abs/1702.05659
  • Karthik, K., and M. Mahadevappa. 2023. Convolution neural networks for optical coherence tomography (OCT) image classification. Biomedical Signal Processing and Control 79:104176. doi:10.1016/j.bspc.2022.104176
  • Kermany, D. S., M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, et al. 2018. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–31.e9. doi:10.1016/j.cell.2018.02.010
  • Kermany, D., K. Zhang, and M. Goldbaum. 2018. Labeled optical coherence tomography (OCT) and chest X-ray images for classification (2018). Mendeley Data V2. doi:10.17632/rscbjbr9sj.2
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25: 1097–105.
  • Lindsay, G. W. 2021. Convolutional neural networks as a model of the visual system: Past, present, and future. Journal of Cognitive Neuroscience 33 (10):2017–31. doi:10.1162/jocn_a_01544
  • Liu, K., R. Ali Amjad, and B. C. Geiger. 2018. Understanding individual neuron importance using information theory. arXiv Preprint arXiv: 1804.06679.
  • Liu, Y., J. A. Starzyk, and Z. Zhu. 2008. Optimized approximation algorithm in neural networks without overfitting. IEEE Transactions on Neural Networks 19 (6):983–95. doi:10.1109/TNN.2007.915114
  • Li, T., Z. Zhuang, H. Liang, L. Peng, H. Wang, and J. Sun. 2021. Self-validation: Early stopping for single-instance deep generative priors. arXiv Preprint arXiv: 2110.12271.
  • Mahsereci, M., L. Balles, C. Lassner, and P. Hennig. 2017. Early stopping without a validation set. arXiv Preprint arXiv: 1703.09580.
  • Narkhede, M. V., P. P. Bartakke, and M. S. Sutaone. 2022. A review on weight initialization strategies for neural networks. Artificial Intelligence Review 55 (1):291–322. doi:10.1007/s10462-021-10033-z
  • Park, E., J. Ahn, and S. Yoo. 2017. Weighted-entropy-based quantization for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 5456–64.
  • Pinto, T., H. Morais, and J. M. Corchado. 2019. Adaptive entropy-based learning with dynamic artificial neural network. Neurocomputing 338:432–40. doi:10.1016/j.neucom.2018.09.092
  • Podoleanu, A. G. 2012. Optical coherence tomography. Journal of Microscopy 247 (3):209–19. doi:10.1111/j.1365-2818.2012.03619.x
  • Powers, D. M. 2020. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv Preprint arXiv: 2010.16061.
  • Raskutti, G., M. J. Wainwright, and B. Yu. 2014. Early stopping and non-parametric regression: An optimal data-dependent stopping rule. The Journal of Machine Learning Research 15 (1):335–66.
  • Rawat, W., and Z. Wang. 2017. Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation 29 (9):2352–449. doi:10.1162/neco_a_00990
  • Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27 (3):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3/4):591–611. doi:10.1093/biomet/52.3-4.591
  • Silva, L. M., J. M. de Sá, and L. A. Alexandre. 2005. Neural network classification using Shannon’s entropy. In Esann, 217–222. Citeseer.
  • Simonyan, K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv: 14091556.
  • Sinha, A., M. Sarkar, A. Mukherjee, and B. Krishnamurthy. 2017. Introspection: Accelerating neural network training by learning weight evolution. arXiv Preprint arXiv: 1704.04959.
  • Srinivasan, V., C. Eswaran, and N. Sriraam. 2007. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine 11 (3):288–95. doi:10.1109/TITB.2006.884369
  • Steinke, T., and L. Zakynthinou. 2020. Reasoning about generalization via conditional mutual information. In Conference on Learning Theory, Graz, Austria, 3437–52. PMLR.
  • Sunija, A. P., S. Kar, S. Gayathri, V. P. Gopi, and P. Palanisamy. 2021. Octnet: A lightweight cnn for retinal disease classification from optical coherence tomography images. Computer Methods and Programs in Biomedicine 200:105877. doi:10.1016/j.cmpb.2020.105877
  • Vardasbi, A., M. de Rijke, and M. Dehghani. 2022. Intersection of Parallels as an Early Stopping Criterion. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta,GA, USA, 1965–74.
  • Xu, Y., P. Cao, Y. Kong, and Y. Wang. 2019. L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise. Advances in Neural Information Processing Systems 32.
  • Xu, A., and M. Raginsky. 2017. Information-theoretic analysis of generalization capability of learning algorithms. Advances in Neural Information Processing Systems 30.
  • Yilmaz, A., and R. Poli. 2022. Successfully and efficiently training deep multi-layer perceptrons with logistic activation function simply requires initializing the weights with an appropriate negative mean. Neural Networks 153:87–103. doi:10.1016/j.neunet.2022.05.030