403
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Applied Artificial Intelligence and Prospect of Internet of Everything (IoE) for the Detection of Tuberculosis

, ORCID Icon, ORCID Icon &
Article: 2358654 | Received 18 Oct 2023, Accepted 15 May 2024, Published online: 24 May 2024

References

  • Akbari, M. N., and A. Azizi. 2023. Building a convolutional neural network model for tuberculosis detection using chest x-ray images. Ghalib Quarterly Journal 1 (1):21–28. doi:10.58342/ajid/ghalibuni.v.1.i.1.5.
  • Bhatia, N. 2010. Survey of nearest neighbor techniques. arXiv Preprint. https://arxiv.org/pdf/1007.0085.
  • Bhavsar, H., and A. Ganatra. 2012. A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing 2 (4):2231–307.
  • Chen, P. H., C. J. Lin, and B. Schölkopf. 2005. A tutorial on ν‐support vector machines. Applied Stochastic Models in Business and Industry 21 (2):111–36. doi:10.1002/asmb.537.
  • Devasia, J., H. Goswami, S. Lakshminarayanan, M. Rajaram, and S. Adithan. 2023. Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: A multi label approach. Scientific Reports 13 (1):887. doi:10.1038/s41598-023-28079-0.
  • Druszczynska, M., M. Kowalewicz-Kulbat, M. Fol, M. Wlodarczyk, and W. L. M. RuDnICKA. 2012. Latent mycobacterium tuberculosis infection – pathogenesis, diagnosis, treatment and prevention strategies. Polish Journal of Microbiology 61 (1):3–10. doi:10.33073/pjm-2012-001.
  • Eliwa, E. H. I., A. M. El Koshiry, T. Abd El-Hafeez, and H. M. Farghaly. 2023. Utilizing convolutional neural networks to classify monkeypox skin lesions. Scientific Reports 13 (1):14495. doi:10.1038/s41598-023-41545-z.
  • Fu, H. T., H. Z. Tu, H. S. Lee, Y. E. Lin, and C. W. Lin. 2022. Evaluation of an AI-Based TB AFB smear screening system for laboratory diagnosis on routine practice. Sens 22 (21):8497. doi:10.3390/s22218497.
  • Gomathi, L., A. K. Mishra, and A. K. Tyagi, 2023, April. Industry 5.0 for healthcare 5.0: opportunities, challenges and future research possibilities. In 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 204–13). IEEE. 10.1109/ICOEI56765.2023.10125660.
  • González-Martín, J., J. M. García-García, L. Anibarro, R. Vidal, J. Esteban, R. Blanquer, J. Ruiz-Manzano, and J. Ruiz-Manzano. 2010. Consensus document on the diagnosis, treatment and prevention of tuberculosis. Archivos de Bronconeumología (English Edition) 46 (5):255–74. doi:10.1016/S1579-2129(10)70061-6.
  • Gupta, P., V. Khare, A. Srivastava, J. Agarwal, V. Mittal, V. Sonkar, S. Saxena, A. Agarwal, and A. Jain. 2023. A prospective observational multicentric clinical trial to evaluate microscopic examination of acid-fast bacilli in sputum by artificial in-telligence-based microscopy system. Journal of Investigative Medicine 10815589231171402 (7):716–21. doi:10.1177/10815589231171402.
  • Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, and H. M. Adam. 2017. Efficient convolutional neural networks for mobile vision applications. arXiv preprint. https://arxiv.org/pdf/1704.04861.
  • Ibrahim, A. U., E. Guler, M. Guvenir, K. Suer, S. Serte, and M. Ozsoz. May 31, 2021b. Automated detection of mycobacterium tuberculosis using transfer learning. Journal of Infection in Developing Countries 15 (5):678–86. doi:10.3855/jidc.13532.
  • Ibrahim, A. U., M. Ozsoz, S. Serte, F. Al-Turjman, and P. S. Yakoi. 2021a. Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cognitive Computation 1–13. doi:10.1007/s12559-020-09787-5.
  • Irkham, I., A. U. Ibrahim, C. W. Nwekwo, F. Al-Turjman, and Y. W. Hartati. 2022. Current Technologies for Detection of COVID-19: Biosensors. Artif Intell and Internet of Med Things (IoMT) Sensors 23 (1):426. doi:10.3390/s23010426.
  • Irkham, I., A. U. Ibrahim, C. W. Nwekwo, F. Al-Turjman, and Y. W. Hartati. 2022. Current technologies for detection of COVID-19: Biosensors, artificial intelligence and internet of medical things (IOMT). Sensors 23 (1):426 doi:10.3390/s23010426.
  • Jaderberg, M., K. Simonyan, A. Vedaldi, and A. Zisserman. 2015. Reading text in the wild with convolutional neural networks. International Journal of Computer Vision 116 (1):1–20. doi:10.1007/s11263-015-0823-z.
  • Kaba, Ş., H. Haci, A. Isin, A. Ilhan, and C. Conkbayir. 2023. The application of deep learning for the segmentation and classifi-cation of coronary arteries. Diagn 13 (13):2274. doi:10.3390/diagnostics13132274.
  • Lakhani, P., and B. Sundaram. 2017. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Rad 284 (2):574–82. doi:10.1148/radiol.2017162326.
  • Lee, J., and J. Lee. 2023. A Study of mycobacterium tuberculosis detection using different neural networks in autopsy specimens. Diagnostics 13 (13):2230. doi:10.3390/diagnostics13132230.
  • Liang, S., J. Ma, G. Wang, J. Shao, J. Li, H. Deng, C. Wang, and W. Li. 2022. The application of artificial intelligence in the diagnosis and drug resistance prediction of pulmonary tuberculosis. Frontiers in Medicine 9:935080. doi:10.3389/fmed.2022.935080.
  • MacGregor-Fairlie, M., S. Wilkinson, G. S. Besra, P. Goldberg Oppenheimer, and J. Low. 2020. Tuberculosis diagnostics: Overcoming ancient challenges with modern solutions. Emerging Topics in Life Sciences 4 (4):435–48. doi:10.1042/ETLS20200335.
  • Mamdouh Farghaly, H., M. Y. Shams, and T. Abd El-Hafeez. 2023. Hepatitis C virus prediction based on machine learning framework: A real-world case study in Egypt. Knowledge and Information Systems 65 (6):2595–617. doi:10.1007/s10115-023-01851-4.
  • Mammone, A., M. Turchi, and N. Cristianini. 2009. Support vector machines. Wiley Interdisciplinary Reviews: Comput Stat 1 (3):283–89. doi:10.1002/wics.49.
  • Nafisah, S. I., and G. Muhammad. 2022. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Computing & Applications 36 (1):1–21. doi:10.1007/s00521-022-07258-6.
  • Noble, W. S. 2006. What is a support vector machine? Nature Biotechnology 24 (12):1565–67. doi:10.1038/nbt1206-1565.
  • Radwan, A. A., and H. Mamdouh. 2013. An analysis of hepatitis C virus prediction using different data mining techniques. International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) 3 (4):209–20.
  • Samet, H. 2008. K-Nearest neighbor finding using MaxNearestDist. IEEE Transactions on Pattern Analysis & Machine Intelligence 30 (2):243–52. doi:10.1109/tpami.2007.1182.
  • Sharma, A., A. Sharma, R. Malhotra, P. Singh, R. K. Chakrabortty, S. Mahajan, and A. K. Pandit. 2021. An accurate artificial intelligence system for the detection of pulmonary and extra pulmonary Tuberculosis. Tuberculosis 131:102143. doi:10.1016/j.tube.2021.102143.
  • Shin, H. C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. J. Mollura, and D. Zhang. 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and Transfer Learning. IEEE Transactions on Medical Imaging 35 (5):1285–98. doi:10.1109/tmi.2016.2528162.
  • Simonyan, K., and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition, computer vision and pattern recognition. arXiv preprint 2014.https://arxiv.org/pdf/1409.1556
  • Singh, S., B. Dey, K. S. Sachdeva, S. K. Kabra, K. K. Chopra, V. K. Chaudhary, P. Sharma, and V. M. Katoch. 2015. Challenges in tuberculosis diagnosis and management: Recommendations of the expert panel. Journal of Laboratory Physicians 7 (1):001–003. doi:10.4103/0974-2727.154778.
  • Targ, S., D. Almeida, K. Lyman, S. Targ, J. T. Jacobsen, Y. M. Mano, C. S. Chen, J.-C. Weill, C.-A. Reynaud, E. P. Browne, et al. 2016. Visualizing antibody affinity maturation in germinal centers. Science (New York, NY) 351 (6277):1048–54. arXiv preprint, arXiv:1603.08029. doi:10.1126/science.aad3439.
  • Toonkomdang, S., P. Phinyo, B. Phetsuksiri, J. Patumanond, J. Rudeeaneksin, W. Klayut, and B. Lin. 2020. Pragmatic accuracy of an in-house loop-mediated isothermal amplification (LAMP) for diagnosis of pulmonary tuberculosis in a Thai community hospital. Public Library of Science ONE 15 (7):e0236496. doi:10.1371/journal.pone.0236496.
  • Tsai, K. S., H. L. Chang, S. T. Chien, K. L. Chen, K. H. Chen, M. H. Mai, and K. T. Chen. 2013. Childhood tuberculosis: Epidemiology, diagnosis, treatment, and vaccination. Pediatr Neonatology 54 (5):295–302. doi:10.1016/j.pedneo.2013.01.019.
  • Umar Ibrahim, A., F. Al-Turjman, M. Ozsoz, and S. Serte. 2022b. Computer aided detection of tuberculosis using two classifiers. Biomedical Engineering / Biomedizinische Technik 67 (6):513–24. doi:10.1515/bmt-2021-0310.
  • Umar Ibrahim, A., M. Ozsoz, S. Serte, F. Al‐Turjman, and S. Habeeb Kolapo. 2022a. Convolutional neural network for diagnosis of viral pneumonia and COVID‐19 alike diseases. Expert Systems 39 (10):e12705. doi:10.1111/exsy.12705.
  • Waluyo, W. N., R. R. Isnanto, and A. F. Rochim. 2023. Comparison of mycobacterium tuberculosis image detection accuracy using CNN and combination CNN-KNN. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7 (1):80–87. doi:10.29207/resti.v7i1.4626.
  • World Health, O. Global Tuberculosis Report 2021. Geneva: World Health Organization. Available at https://www.who.int/publications/i/item/9789240037021. Accessed on 10 March, 2023.
  • Xiong, Y., X. Ba, A. Hou, K. Zhang, L. Chen, and T. Li. 2018. Automatic detection of mycobacterium tuberculosis using artificial intelligence. Journal of Thoracic Disease 10 (3):1936. doi:10.21037/jtd.2018.01.91.
  • Yuen, C. M., J. M. Seddon, S. Keshavjee, and P. J. Dodd. 2020. Risk-benefit analysis of tuberculosis infection testing for household contact management in high-burden countries: A mathematical modelling study. The Lancet Global Health 5 (8):e672–80. doi:10.1016/s2214-109x(20)30075-9.
  • Zhang, Z. 2016. Introduction to machine learning: K-nearest neighbors. Annals of Translational Medicine 4 (11):218–218. doi:10.21037/atm.2016.03.37.
  • Zhang, Y., L. Qian, W. Wei, Y. Wang, B. Wang, P. Lin, W. Liu, L. Xu, X. Li, D. Liu, et al. 2017. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synthetic Biology 6 (2):211–16. doi:10.1021/acssynbio.6b00215.
  • Zurac, S., C. Mogodici, T. Poncu, M. Trăscău, C. Popp, L. Nichita, M. Cioplea, B. Ceachi, L. Sticlaru, A. Cioroianu, et al. 2022. A new artificial intelligence-based method for identifying mycobacterium tuberculosis in Ziehl–Neelsen stain on tissue. Diagn 12 (6):1484. doi:10.3390/diagnostics12061484.