19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detecting Changeover Events on Manufacturing Machines with Machine Learning and NC data

ORCID Icon, , , , &
Article: 2381317 | Received 17 May 2024, Accepted 08 Jul 2024, Published online: 24 Jul 2024

References

  • Abdi, H., and L. Williams. 2010. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2 (4):433–37. doi:10.1002/wics.101.
  • Akosa, J. 2017. Predictive accuracy: A misleading performance measure for highly imbalanced data. Proceedings of the SAS Global Forum 12:1–4. Cary, NC, USA: SAS Institute Inc.
  • Ayvaz, S., and K. Alpay. 2021. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications 173:114598. doi:10.1016/j.eswa.2021.114598.
  • Bentéjac, C., A. Csörgö, and G. Martínez-Muñoz. 2021. A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review 54 (3):1937–67. doi:10.1007/s10462-020-09896-5.
  • Biju, V. G., A.-M. Schmitt, and B. Engelmann. 2024. Assessing the influence of sensor-induced noise on machine-learning-based changeover detection in CNC machines. Sensors 24 (2):330. doi:10.3390/s24020330.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Can, B., and C. Heavey. 2016. A demonstration of machine learning for explicit functions for cycle time prediction using MES data. 2016 Winter Simulation Conference (WSC), 11-14 December 2016, Washington, DC, USA, 2500–11.
  • Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, R. Wirth. 2000. CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc 9:13.
  • Chicco, D., and G. Jurman. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21 (1):1–13. doi:10.1186/s12864-019-6413-7.
  • Denkena, B., M.-A. Dittrich, H. Noske, K. Kramer, and M. Schmidt. 2021. Anwendungen des maschinellen Lernens in der Produktion aus Auftrags- und Produktsicht. Zeitschrift Für Wirtschaftlichen Fabrikbetrieb 116 (5):358–62. Accessed june 13, 2024. doi:10.1515/zwf-2021-0068.
  • Drummond, C. 2017. Attribute. In Encyclopedia of machine learning and data mining, ed. C. Sammut and G. I. Webb, 73–75. Boston, MA: Springer US.
  • Du Preez, A., and G. A. Oosthuizen. 2019. Machine learning in cutting processes as enabler for smart sustainable manufacturing. Procedia Manufacturing 33:810–17. doi:10.1016/j.promfg.2019.04.102.
  • Engelmann, B., and A.-M. Schmitt. March, 2024. Series production data set for 5-axis CNC milling. Data 9 (5):66. doi:10.3390/s24020330.
  • Engelmann, B., A.-M. Schmitt, L. Theilacker, and J. Schmitt. 2024. Implications from legacy device environments on the conceptional design of machine learning models in manufacturing. Journal of Manufacturing and Materials Processing 8 (1):15. doi:10.3390/jmmp8010015.
  • Engelmann, B., S. Schmitt, E. Miller, V. Bräutigam, and J. Schmitt. 2020. Advances in machine learning detecting changeover processes in cyber physical production systems. Journal of Manufacturing and Materials Processing 4 (4):108. doi:10.3390/jmmp4040108.
  • Fisher, A., C. Rudin, and F. Dominici. 2019. All models are wrong, but many are useful: Learning a Variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research 20 (177):1–81.
  • Focke, M., and J. Steinbeck. 2018. Steigerung der Anlagenproduktivität durch OEE-Management. Wiesbaden: Springer Gäbler.
  • Forstner, L., and M. Dümmler. 2014. Integrierte Wertschöpfungsnetzwerke–Chancen und Potenziale durch Industrie 4.0. e & i Elektrotechnik und Informationstechnik 131 (7):199–201. doi:10.1007/s00502-014-0224-y.
  • Gelders, L. F., and L. N. Van Wassenhove. 1982. Hierarchical integration in production planning: Theory and practice. Journal of Operations Management 3 (1):27–35. doi:10.1016/0272-6963(82)90019-5.
  • Géron, A. 2019. Hands-on machine learning with Scikit-learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. Sebastopol, CA: O’Reilly Media, Inc.
  • Geurts, P., D. Ernst, and L. Wehenkel. 2006. Extremely randomized trees. Machine Learning 63 (1):3–42. doi:10.1007/s10994-006-6226-1.
  • Hagl, S. 2007. Schnelleinstieg Statistik. Haufe Praxisratgeber. Freiburg: Haufe-Lexware GmbH & Co. KG.
  • Huber, S., H. Wiemer, D. Schneider, and S. Ihlenfeldt. 2019. DMME: Data mining methodology for engineering applications – a holistic extension to the CRISP-DM model. Procedia CIRP, 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering 79:403–08. Gulf of Naples, Italy. Accessed July 18–20, 2018. doi:10.1016/j.procir.2019.02.106.
  • ISO 22400-2:2014(E). 2014. Automation systems and integration — key performance indicators (KPIs) for manufacturing operations management — part 2: Definitions and descriptions. Standard. Geneva, CH: International Organization for Standardization.
  • Kang, Z., C. Catal, and B. Tekinerdogan. 2020. Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering 149:106773. doi:10.1016/j.cie.2020.106773.
  • Khajehali, N., J. Yan, Y.-W. Chow, and M. Fahmideh. 2023. A comprehensive overview of IoT-based federated learning: Focusing on client selection methods. Sensors 23 (16):7235. doi:10.3390/s23167235.
  • König, W., and F. Klocke. 2002. Einleitung, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-07202-8_1.
  • Lever, J., M. Krzywinski, and N. S. Altman. 2017. Points of significance: Principal component analysis. Nature Methods 14 (7):641–42. doi:10.1038/nmeth.4346.
  • Liashchynskyi, P., and P. Liashchynskyi. 2019. Grid search, random search, genetic algorithm: a big comparison for NAS. CoRR Abs/1912.06059. doi:10.48550/arXiv.1912.06059.
  • Lotter, B., J. Deuse, and E. Lotter. 2016. Die Primäre Produktion. Berlin, Heidelberg: Springer Berlin Heidelberg 10:978–3. doi:10.1007/978-3-662-53212-6.
  • Mali, Y. R., and K. H. Inamdar. 2012. Changeover time reduction using SMED technique of lean manufacturing. International Journal of Engineering Research and Applications 2 (3):2441–45.
  • Meyes, R., M. Lu, C. W. de Puiseau, and T. Meisen. 2019. Ablation studies in artificial neural networks. arXiv preprint arXiv:1901.08644.
  • Miao, J., and L. Niu. 2016. A survey on feature selection. Procedia Computer Science 91 (4):919–26. doi:10.1016/j.procs.2016.07.111.
  • Miller, E., V. Borysenko, M. Heusinger, N. Niedner, B. Engelmann, and J. Schmitt. 2021. Enhanced changeover detection in industry 4.0 environments with machine learning. Sensors 21 (17):5896. doi:10.3390/s21175896.
  • Molnar, C. 2019. Interpretable machine learning. Victoria, British Columbia, Canada: Leanpub.
  • Neuber, T., A.-M. Schmitt, B. Engelmann, and J. Schmitt. 2022. Evaluation of the influence of machine tools on the accuracy of indoor positioning systems. Sensors 22 (24):10015. doi:10.3390/s222410015.
  • Quatrini, E., F. Costantino, G. Di Gravio, and R. Patriarca. 2020. Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities. Journal of Manufacturing Systems 56:117–32. doi:10.1016/j.jmsy.2020.05.013.
  • Ringsquandl, M., S. Lamparter, and R. Lepratti. 2015. Estimating processing times within context-aware manufacturing systems. IFAC-Papersonline 48 (3):2009–14. 15th IFAC Symposium onInformation Control Problems inManufacturing. doi:10.1016/j.ifacol.2015.06.383.
  • Rustam, F., A. Ahmad Reshi, I. Ashraf, A. Mehmood, S. Ullah, D. Muhammad Khan, and G. Sang Choi. 2020. Sensor-based human activity recognition using deep stacked multilayered perceptron model. Institute of Electrical and Electronics Engineers Access 8:218898–910. doi:10.1109/ACCESS.2020.3041822.
  • SAP. n.a. June 17, 2024a. Campaign optimization. https://help.sap.com/doc/saphelp_snc70/7.0/en-US/cd/2a673b19f27654e10000000a114084/content.htm.
  • SAP. n.a. June 17, 2024b. Setup matrix. https://help.sap.com/doc/saphelp_scm700_ehp02/7.0.2/en-US/8e/4ec95360267614e10000000a174cb4/frameset.htm.
  • Schmitt, A.-M., and B. Engelmann. 2024. A series production data set for five-axis CNC milling. Data 9 (5):66. https://www.mdpi.com/2306-5729/9/5/66. doi:10.3390/data9050066.
  • Schröer, C., F. Kruse, and J. M. Gómez. 2021. A systematic literature review on applying CRISP-DM process model. Procedia Computer Science 181:526–34. doi:10.1016/j.procs.2021.01.199.
  • Senn, M., and HERMLE 300.91K4-0.3. 2001. Schaltplan. Industriestr.8-12, 78559 Gosheim: HERMLE.
  • Sihn, W., A. Sunk, T. Nemeth, P. Kuhlang, and K. Matyas. 2016. Produktion und Qualität: Organisation, Management, Prozesse. München: Carl Hanser Verlag GmbH Co KG.
  • Sokolova, M., N. Japkowicz, and S. Szpakowicz. 2006. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. Australasian joint conference on artificial intelligence, December 4-8, Hobart, 1015–21. Springer.
  • Song, Z., and S. Luo. 2022. Application of machine learning and data mining in manufacturing industry. Frontiers in Computing and Intelligent Systems 2 (1):47–53. doi:10.54097/fcis.v2i1.2966.
  • Strauß, P., M. Schmitz, R. Wöstmann, and J. Deuse. 2018. Enabling of predictive maintenance in the brownfield through low-cost sensors, an IIoT-architecture and machine learning. 2018 IEEE International conference on big data (big data), December 10-13, Seattle, WA, USA, 1474–83. IEEE.
  • Team, P. P. D. 2002. Standard work for the shopfloor. The Shopfloor Series. Taylor & Francis. https://books.google.de/books?id=ye7gwAEACAAJ.
  • Torres, D., C. Pimentel, and S. Duarte. 2020. Shop floor management system in the context of smart manufacturing: A case study. International Journal of Lean Six Sigma 11 (5):823–48. doi:10.1108/IJLSS-12-2017-0151.
  • Van der Maaten, L., and G. Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9 (11):2579–2605
  • Wang, Z., W. Yan, and T. Oates. 2017. Time series classification from scratch with deep neural networks: A strong baseline. 2017 International joint conference on neural networks (IJCNN), May 14-19, Anchorage, AK, USA, 1578–85. IEEE.
  • Wirth, R., and J. Hipp. 2000. CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining 1:29–40. Manchester.
  • Wolsey, L. A. 1997. MIP modelling of changeovers in production planning and scheduling problems. European Journal of Operational Research 99 (1):154–65. doi:10.1016/S0377-2217(97)89646-4.
  • Yan, R., A. Julius, M. Chang, A. Fokoue, T. Ma, and R. Uceda-Sosa. 2021. STONE: Signal temporal logic neural network for time series classification. 2021 International Conference on Data Mining Workshops (ICDMW), December 07-10, Auckland, New Zealand, 778–87. IEEE.
  • Yu, L., and H. Liu. 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proceedings of the 20th international conference on machine learning (ICML-03), August 21-24, Washington, DC, USA, 856–63.
  • Zeberli, A., S. Badr, C. Siegmund, M. Mattern, and H. Sugiyama. 2021. Data-driven anomaly detection and diagnostics for changeover processes in biopharmaceutical drug product manufacturing. Chemical Engineering Research & Design 167:53–62. doi:10.1016/j.cherd.2020.12.018.
  • Zhang, Y., L. Yongxian, and X. Bai. 2010. The research on the intelligent Interpreter for ISO 14649 programs. In Advances in computation and intelligence, ed. Z. Cai, C. Hu, Z. Kang, and Y. Liu, 523–34. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Zhou, J., G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1:57–81. doi:10.1016/j.aiopen.2021.01.001.