1,771
Views
5
CrossRef citations to date
0
Altmetric
Laboratory Study

Renoprotective effect of vildagliptin following hepatic ischemia/reperfusion injury

ORCID Icon, &
Pages 208-215 | Received 04 Oct 2019, Accepted 04 Feb 2020, Published online: 26 Feb 2020

References

  • Magyar Z, Varga G, Mester A, et al. Is the early or delayed remote ischemic preconditioning the more effective from a microcirculatory and histological point of view in a rat model of partial liver ischemia-reperfusion? Acta Cir Bras. 2018;33:597–608.
  • Zaki AM, El-Tanbouly DM, Abdelsalam RM, et al. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: role of high mobility group box 1 in inflammation, oxidative stress and apoptosis. Biomed Pharmacother. 2018;106:785–793.
  • Miranda LC, Capellini V, Reis G, et al. Effects of partial liver ischemia followed by global liver reperfusion on the remote tissue expression of nitric oxide synthase: lungs and kidneys. Transplant Proc. 2010;42:1557–1562.
  • Tüfek A, Tokgöz O, Aliosmanoglu İ, et al. The protective effects of dexmedetomidine on the liver and remote organs against hepatic ischemia reperfusion injury in rats. Int J Surg. 2013;11:96–100.
  • Sun H, Zou S, Candiotti KA, et al. Octreotide attenuates acute kidney injury after hepatic ischemia and reperfusion by enhancing autophagy. Sci Rep. 2017;7:42701.
  • Zhou L, Zhao D, An H, et al. Melatonin prevents lung injury induced by hepatic ischemia–reperfusion through anti-inflammatory and anti-apoptosis effects. Int Immunopharmacol. 2015;29:462–467.
  • Ceriello A, Sportiello L, Rafaniello C, et al. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf. 2014;13:57–68.
  • Reichetzeder C, Websky K, Tsuprykov O, et al. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury. Br J Pharmacol. 2017;174:2273–2286.
  • Youssef MI, Mahmoud AA, Abdelghany RH. A new combination of sitagliptin and furosemide protects against remote myocardial injury induced by renal ischemia/reperfusion in rats. Biochem Pharmacol. 2015;96:20–29.
  • Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2012;303:F681–F688.
  • Sherif IO, Al-Shaalan NH. Vildagliptin attenuates hepatic ischemia/reperfusion injury via the TLR4/NF-κB signaling pathway. Oxid Med Cell Longevity. 2018;2018. Article ID 3509091.
  • Suzuki T, Tada Y, Gladson S, et al. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res. 2017;18:177.
  • Zaky D-AA, Shorbagy MY, Nassar NN, et al. Novel gut barrier modulatory effect of vildagliptin in amelioration of bacterial translocation in cholestatic rats. FASEB J. 2016;30:lb553.
  • Takhtfooladi MA, Shahzamani M, Asghari A, et al. Naloxone pretreatment prevents kidney injury after liver ischemia reperfusion injury. Int Urol Nephrol. 2016;48:1113–1120.
  • Park SW, Chen SW, Kim M, et al. Human activated protein C attenuates both hepatic and renal injury caused by hepatic ischemia and reperfusion injury in mice. Kidney Int. 2009;76:739–750.
  • Han SJ, Jang H-S, Seu SY, et al. Hepatic ischemia/reperfusion injury disrupts the homeostasis of kidney primary cilia via oxidative stress. Biochim Biophys Acta. 2017;1863:1817–1828.
  • Gonul Y, Ozsoy M, Kocak A, et al. Antioxidant, antiapoptotic and inflammatory effects of interleukin-18 binding protein on kidney damage induced by hepatic ischemia reperfusion. Am J Med Sci. 2016;351:607–615.
  • Kudo Y, Egashira T, Takayama F, et al. Investigation of the renal injury caused by liver ischemia-reperfusion in rats. Arch Toxicol. 1993;67:502–509.
  • Tanaka Y, Maher JM, Chen C, et al. Hepatic ischemia-reperfusion induces renal heme oxygenase-1 via NF-E2-related factor 2 in rats and mice. Mol Pharmacol. 2007;71:817–825.
  • Mard SA, Akbari G, Mansouri E, et al. Renoprotective effect of crocin following liver ischemia/ reperfusion injury in Wistar rats. Iran J Basic Med Sci. 2017;20:1172–1177.
  • Li X, Li X, Chi X, et al. Ulinastatin ameliorates acute kidney injury following liver transplantation in rats and humans. Exp Ther Med. 2015;9:411–416.
  • Lee HT, Park SW, Kim MD, et al. Acute kidney injury after hepatic ischemia and reperfusion injury in mice. Lab Invest. 2009;89:196–208.
  • Kadkhodaee M, Mikaeili S, Zahmatkesh M, et al. Alteration of renal functional, oxidative stress and inflammatory indices following hepatic ischemia-reperfusion. Gen Physiol Biophys. 2012;31:195–202.
  • Oguz A, Kapan M, Onder A, et al. The effects of curcumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats. Eur Rev Med Pharmacol Sci. 2013;17:457–466.
  • Nuransoy A, Beytur A, Polat A, et al. Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Renal Fail. 2015;37:687–693.
  • Chang M-w, Chen C-h, Chen Y-c, et al. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors. Acta Pharmacol Sin. 2015;36:119–130.
  • Bayrami G, Alihemmati A, Karimi P, et al. Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity. Adv Pharm Bull. 2018;8:319–329.
  • El-Marasy SA, Abdel-Rahman RF, Abd-Elsalam RM. Neuroprotective effect of vildagliptin against cerebral ischemia in rats. Naunyn-Schmiedeberg's Arch Pharmacol. 2018;391:1133–1145.
  • Lan HY, Chung A-K. TGF-β/Smad signaling in kidney disease. Semin Nephrol. 2012;32:236–243.
  • Wang D, Zhang G, Chen X, et al. Sitagliptin ameliorates diabetic nephropathy by blocking TGF-β1/Smad signaling pathway. Int J Mol Med. 2018;41:2784–2792.
  • Xu YL, Zhang MH, Guo W, et al. MicroRNA-19 restores vascular endothelial cell function in lower limb ischemia-reperfusion injury through the KLF10-dependent TGF-β1/Smad signaling pathway in rats. J Cell Biochem. 2018;119:9303–9315.
  • Chen C, Lei W, Chen W, et al. Serum TGF-β1 and SMAD3 levels are closely associated with coronary artery disease. BMC Cardiovasc Disord. 2014;14:18.
  • Liu F-f, Liu C-y, Li X-p, et al. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion. Neural Regen Res. 2015;10:438.
  • Zhang S, Wang D, Xue N, et al. Nicousamide protects kidney podocyte by inhibiting the TGFβ receptor II phosphorylation and AGE-RAGE signaling. Am J Transl Res. 2017;9:115–125.
  • Lou Z, Wang A-P, Duan X-M, et al. Upregulation of NOX2 and NOX4 mediated by TGF-β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell Physiol Biochem. 2018;46:2103–2113.
  • Shan L, Kang X, Liu F, et al. Epigallocatechin gallate improves airway inflammation through TGF-β1 signaling pathway in asthmatic mice. Mol Med Rep. 2018;18:2088–2096.
  • Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.
  • Cury MFR, Olivares EQ, Garcias RC, et al. Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion. J Bras Nefrol. 2018;40:312–318.
  • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684–696.
  • Rubbia-Brandt L, Mentha G, Desmoulière A, et al. Hepatic stellate cells reversibly express α-smooth muscle actin during acute hepatic ischemia. Transplant Proc. 1997;29:2390–2395.
  • Lin L, He Y, Zhang J, et al. The effects and possible mechanisms of puerarin to treat uterine fibrosis induced by ischemia-reperfusion injury in rats. Med Sci Monit. 2017;23:3404–3411.
  • Danobeitia JS, Ziemelis M, Ma X, et al. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. PLoS One. 2017;12:e0183701.
  • Gómez G, Velarde V. Boldine improves kidney damage in the Goldblatt 2K1C model avoiding the increase in TGF-β. Int J Mol Sci. 2018;19:1864.
  • Gonlusen G, Ergin M, Paydaş S, et al. The expression of cytoskeletal proteins (alpha-SMA, vimentin, desmin) in kidney tissue: a comparison of fetal, normal kidneys, and glomerulonephritis. Int Urol Nephrol. 2001;33:299–305.
  • Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340:248–255.
  • Uchida T, Oda T, Matsubara H, et al. Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis. Renal Fail. 2017;39:340–349.
  • Murase H, Kuno A, Miki T, et al. Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovasc Diabetol. 2015;14:103.
  • El-Sherbeeny NA, Nader MA. The protective effect of vildagliptin in chronic experimental cyclosporine A-induced hepatotoxicity. Can J Physiol Pharmacol. 2016;94:251–256.
  • Sunkara G, Sabo R, Wang Y, et al. Dose proportionality and the effect of food on vildagliptin, a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. J Clin Pharmacol. 2007;47:1152–1158.