4,766
Views
10
CrossRef citations to date
0
Altmetric
State-of-the-Art Review

Emerging medical therapies in crush syndrome – progress report from basic sciences and potential future avenues

, , , , &
Pages 656-666 | Received 21 Apr 2020, Accepted 30 Jun 2020, Published online: 14 Jul 2020

References

  • Better OS. History of the crush syndrome: from the earthquakes of Messina, Sicily 1909 to Spitak, Armenia 1988. Am J Nephrol. 1997;17(3–4):392–394.
  • Bywaters EG, Beall D. Crush injuries with impairment of renal function. Br Med J. 1941;1(4185):427–432.
  • Bywaters EG, Beall D. Crush injuries with impairment of renal function. 1941. J Am Soc Nephrol. 1998;9(2):322–332.
  • Oda J, Tanaka H, Yoshioka T, et al. Analysis of 372 patients with Crush syndrome caused by the Hanshin-Awaji earthquake. J Trauma. 1997;42(3):470–475. discussion 475–476.
  • Better OS. The crush syndrome revisited (1940–1990). Nephron. 1990;55(2):97–103.
  • Hertzberg D, Ryden L, Pickering JW, et al. Acute kidney injury-an overview of diagnostic methods and clinical management. Clin Kidney J. 2017;10(3):323–331.
  • Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303–1353.
  • Odeh M. The role of reperfusion-induced injury in the pathogenesis of the crush syndrome. N Engl J Med. 1991;324(20):1417–1422.
  • Gonzalez D. Crush syndrome. Crit Care Med. 2005;33(1 Suppl):S34–S41.
  • Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.
  • Song XB, Zhou XL, Ni SZ, et al. Early fluid resuscitation with hypertonic solution in a rat crush injury model. Shock. 2013;39(5):453–459.
  • Sever MS, Vanholder R, Lameire N. Management of crush-related injuries after disasters. N Engl J Med. 2006;354(10):1052–1063.
  • AlEnezi F, Alhazzani W, Ma J, et al. Continuous venovenous hemofiltration versus continuous venovenous hemodiafiltration in critically ill patients: a retrospective cohort study from a Canadian tertiary centre. Can Respir J. 2014;21(3):176–180.
  • Cuong NT, Abe C, Binh NH, et al. Sivelestat improves outcome of crush injury by inhibiting high-mobility group box 1 in rats. Shock. 2013;39(1):89–95.
  • Shimazaki J, Matsumoto N, Ogura H, et al. Systemic involvement of high-mobility group box 1 protein and therapeutic effect of anti-high-mobility group box 1 protein antibody in a rat model of crush injury. Shock. 2012;37(6):634–638.
  • Sever MS, Vanholder R. Management of crush victims in mass disasters: highlights from recently published recommendations. Clin J Am Soc Nephrol. 2013;8(2):328–335.
  • Koyner JL, Sher Ali R, Murray PT. Antioxidants. Do they have a place in the prevention or therapy of acute kidney injury? Nephron Exp Nephrol. 2008;109(4):e109–e117.
  • Plotnikov EY, Chupyrkina AA, Jankauskas SS, et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta. 2011;1812(1):77–86.
  • Plotnikov EY, Silachev DN, Chupyrkina AA, et al. New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. Biochemistry Mosc. 2010;75(2):145–150.
  • Anderson R, Franch A, Castell M, et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res Ther. 2010;12(4):R147.
  • Ebata T, Hayasaka H. Effects of aldosterone and dexamethasone on blood chemical mediators in endotoxin shock. Jpn J Surg. 1979;9(1):79–85.
  • Ebata T, Osanai H, Kobayashi K, et al. Effect of dexamethasone in endotoxin shock–difference in anti-toxic potency among ester types of dexamethasone (author’s transl). Masui. The Japanese J Anesthesiol. 1978;27(4):355–359.
  • Tang HX, Fan XM. Effect of dexamethasone, aminoguanidin, amrinone on oxygen utilization in endotoxin shock rabbits. Zhonghua er ke za zhi = Chinese journal of pediatrics. 2003;41(4):282–285.
  • Murata I, Goto M, Komiya M, et al. Early therapeutic intervention for crush syndrome: characterization of intramuscular administration of dexamethasone by pharmacokinetic and biochemical parameters in rats. Biol Pharm Bull. 2016;39(9):1424–1431.
  • Murata I, Otsuka A, Hara C, et al. Pharmacokinetics characteristics of dexamethasone in Crush syndrome model rats. Yakugaku Zasshi. 2015;135(2):315–322.
  • Murata I, Ooi K, Shoji S, et al. Acute lethal crush-injured rats can be successfully rescued by a single injection of high-dose dexamethasone through a pathway involving PI3K-Akt-eNOS signaling. J Trauma Acute Care Surg. 2013;75(2):241–249.
  • Adamson R, Rambaran C, D’Cruz DP. Anabolic steroid-induced rhabdomyolysis. Hosp Med. 2005;66(6):362.
  • Daniels JM, van Westerloo DJ, de Hon OM, et al. [Rhabdomyolysis in a bodybuilder using steroids]. Ned Tijdschr Geneeskd. 2006;150(19):1077–1080.
  • Schouten VL, van der Spoel JI. Massive rhabdomyolysis due to corticosteroids and muscle blocking agents, proven by rechallenge. Neth J Crit Care. 2019;27(6):246–248.
  • Chung HY, Baek BS, Song SH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha). 1997;20(3):127–140.
  • Touyz RM. Chapter 69 - reactive oxygen species and oxidative stress. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. 3rd ed. San Diego: Academic Press; 2012. p. 335–338.
  • George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265–272.
  • Ibrahim B, Stoward PJ. The histochemical localization of xanthine oxidase. Histochem J. 1978;10(5):615–617.
  • Cighetti G, Del Puppo M, Paroni R, et al. Lack of conversion of xanthine dehydrogenase to xanthine oxidase during warm renal ischemia. FEBS Lett. 1990;274(1–2):82–84.
  • Saksela M, Lapatto R, Raivio KO. Irreversible conversion of xanthine dehydrogenase into xanthine oxidase by a mitochondrial protease. FEBS Lett. 1999;443(2):117–120.
  • Glantzounis GK, Tsimoyiannis EC, Kappas AM, et al. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145–4151.
  • Hellsten Y, Ahlborg G, Jensen-Urstad M, et al. Indication of in vivo xanthine oxidase activity in human skeletal muscle during exercise. Acta Physiol Scand. 1988;134(1):159–160.
  • Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58(1):87–114.
  • White WB. Gout, xanthine oxidase inhibition, and cardiovascular outcomes. Circulation. 2018;138(11):1127–1129.
  • Kim JH, Lee SS, Jung MH, et al. N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant. 2010;25(5):1435–1443.
  • Homsi E, de Brito SM, Janino P. Silymarin exacerbates p53-mediated tubular apoptosis in glycerol-induced acute kidney injury in rats. Ren Fail. 2010;32(5):623–632.
  • Gois PHF, Canale D, Volpini RA, et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection. Free Radic Biol Med. 2016;101:176–189.
  • Bryan NS, Fernandez BO, Bauer SM, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol. 2005;1(5):290–297.
  • Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol. 2001;11(2):66–75.
  • Raat NJ, Noguchi AC, Liu VB, et al. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response. Free Radic Biol Med. 2009;47(5):510–517.
  • Cui H, Feng Y, Shu C, et al. Dietary nitrate protects against skin flap ischemia-reperfusion injury in rats via modulation of antioxidative action and reduction of inflammatory responses. Front Pharmacol. 2019;10:1605.
  • Murata I, Nozaki R, Ooi K, et al. Nitrite reduces ischemia/reperfusion-induced muscle damage and improves survival rates in rat crush injury model. J Trauma Acute Care Surg. 2012;72(6):1548–1554.
  • Murata I, Miyake Y, Takahashi N, et al. Low-dose sodium nitrite fluid resuscitation prevents lethality from crush syndrome by improving nitric oxide consumption and preventing myoglobin cytotoxicity in kidney in a rat model. Shock. 2017;48(1):112–118.
  • Kobayashi J, Murata I. Nitrite as a pharmacological intervention for the successful treatment of crush syndrome. Physiol Rep. 2018;6(5):e13633.
  • Zhao CL, Ron S, Liu CG, et al. Blocking effect of anisodamine on acetylcholine receptor channels. Zhongguo Yao Li Xue Bao. 1993;14(2):190–192.
  • Poupko J, Baskin S, Moore E. The pharmacological properties of anisodamine. J Appl Toxicol. 2007;27(2):116–121.
  • Zhao T, Li DJ, Liu C, et al. Beneficial effects of anisodamine in shock involved cholinergic anti-inflammatory pathway. Front Pharmacol. 2011;2:23.
  • Eisenkraft A, Falk A. Possible role for anisodamine in organophosphate poisoning. Br J Pharmacol. 2016;173(11):1719–1727.
  • Yu JG, Fan BS, Guo JM, et al. Anisodamine ameliorates hyperkalemia during crush syndrome through estradiol-induced enhancement of insulin sensitivity. Front Pharmacol. 2019;10:1444.
  • Fan BS, Zhang EH, Wu M, et al. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway. Front Pharmacol. 2016;7:79.
  • Li YF, Xu BY, An R, et al. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury. BMC Nephrol. 2019;20(1):223.
  • Sinclair S. Chinese herbs: a clinical review of Astragalus, Ligusticum, and Schizandrae. Altern Med Rev. 1998;3(5):338–344.
  • Graziani V, Scognamiglio M, Esposito A, et al. Chemical diversity and biological activities of the saponins isolated from Astragalus genus: focus on Astragaloside IV. Phytochem Rev. 2019;18(4):1133–1166.
  • Chen XJ, Meng D, Feng L, et al. Protective effect of astragalosides on myocardial injury by isoproterenol in SD rats. Am J Chin Med. 2006;34(6):1015–1025.
  • Li ZP, Cao Q. Effects of astragaloside IV on myocardial calcium transport and cardiac function in ischemic rats. Acta Pharmacol Sin. 2002;23(10):898–904.
  • Qu YZ, Li M, Zhao YL, et al. Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur J Pharmacol. 2009;606(1–3):137–141.
  • Zhang WD, Chen H, Zhang C, Liu RH, Li HL, et al. Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta Med. 2006;72(1):4–8.
  • Tan S, Wang G, Guo Y, et al. Preventive effects of a natural anti-inflammatory agent, astragaloside IV, on ischemic acute kidney injury in rats. Evid Based Complement Alternat Med. 2013;2013:284025.
  • Qi W, Niu J, Qin Q, et al. Astragaloside IV attenuates glycated albumin-induced epithelial-to-mesenchymal transition by inhibiting oxidative stress in renal proximal tubular cells. Cell Stress Chaperones. 2014;19(1):105–114.
  • Xu C, Tang F, Lu M, et al. Astragaloside IV improves the isoproterenol-induced vascular dysfunction via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-κB pathways. Int Immunopharmacol. 2016;33:119–127.
  • Xu C, Tang F, Lu M, et al. Pretreatment with Astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase - ROS - NF-κB pathway. Can J Physiol Pharmacol. 2016;94(11):1132–1140.
  • Murata I, Abe Y, Yaginuma Y, et al. Astragaloside-IV prevents acute kidney injury and inflammation by normalizing muscular mitochondrial function associated with a nitric oxide protective mechanism in crush syndrome rats. Ann Intensive Care. 2017;7(1):90.
  • Han Y, Shang Q, Yao J, et al. Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis. 2019;10(4):293.
  • Zoccali C, Catalano C, Rastelli S. Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant. 2009;24(5):1394–1396.
  • Yang G, Wang R. H2S and blood vessels: an overview. Handb Exp Pharmacol. 2015;230:85–110.
  • Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014;41:4–10.
  • Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12(1):1–13.
  • Teksen Y, Kadioglu E, Kocak C, et al. Effect of hydrogen sulfide on kidney injury in rat model of crush syndrome. J Surg Res. 2019;235:470–478.
  • Ahmad R, Raina D, Meyer C, et al. Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem. 2006;281(47):35764–35769.
  • Nagasu H, Sogawa Y, Kidokoro K, et al. Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function. Faseb J. 2019;33(11):12253–12263.
  • Kadioglu E, Teksen Y, Kocak C, et al. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg. 2019.DOI: https://doi.org/10.1007/s00068-019-01216-z
  • Vaziri ND, Liu S, Farzaneh SH, et al. Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease. Free Radic Biol Med. 2015;86:374–381.
  • Perveen K, Hanif F, Jawed H, et al. N-(2-hydroxy phenyl) acetamide: a novel suppressor of Toll-like receptors (TLR-2 and TLR-4) in adjuvant-induced arthritic rats. Mol Cell Biochem. 2014;394(1–2):67–75.
  • Jawed H, Shah SU, Jamall S, et al. N-(2-hydroxy phenyl) acetamide inhibits inflammation-related cytokines and ROS in adjuvant-induced arthritic (AIA) rats. Int Immunopharmacol. 2010;10(8):900–905.
  • Perveen K, Hanif F, Jawed H, et al. Protective efficacy of N-(2-hydroxyphenyl) acetamide against adjuvant-induced arthritis in rats. BioMed Res Int. 2013;2013:1–8.
  • Siddiqui RA, Simjee SU, Kabir N, et al. N-(2-hydroxyphenyl)acetamide and its gold nanoparticle conjugation prevent glycerol-induced acute kidney injury by attenuating inflammation and oxidative injury in mice. Mol Cell Biochem. 2019;450(1–2):43–52.
  • Ito K, Mizutani A, Kira S, et al. Effect of Ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in rats via the inhibition of activated leukocytes. Injury. 2005;36(3):387–394.
  • Umeadi C, Kandeel F, Al-Abdullah I. Ulinastatin is a novel protease inhibitor and neutral protease activator. Transplant Proc. 2008;40(2):387–389.
  • Atal S, Atal S. Ulinastatin – a newer potential therapeutic option for multiple organ dysfunction syndrome. J Basic Clin Physiol Pharmacol. 2016;27(2):91–99.
  • Yang XY, Song J, Hou SK, et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells. Int Immunopharmacol. 2020;81:106265.
  • Sasaki R. Pleiotropic functions of erythropoietin. Intern Med. 2003;42(2):142–149.
  • Zhang G, Lehmann HC, Bogdanova N, et al. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PloS One. 2011;6(10):e27067.
  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Selective modulation of the erythropoietic and tissue-protective effects of erythropoietin: time to reach the full therapeutic potential of erythropoietin. Biochim Biophys Acta. 2007;1776(1):1–9.
  • Sharples EJ, Thiemermann C, Yaqoob MM. Mechanisms of disease: cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. Nat Clin Pract Nephrol. 2005;1(2):87–97.
  • Arcasoy MO. Non-erythroid effects of erythropoietin. Haematologica. 2010;95(11):1803–1805.
  • Yang FL, Subeq YM, Chiu YH, et al. Recombinant human erythropoietin reduces rhabdomyolysis-induced acute renal failure in rats. Injury. 2012;43(3):367–373.
  • Wang S, Zhang C, Li J, et al. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis. 2017;8(4):e2725.
  • Zhou J, Bai Y, Jiang Y, et al. Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-kappaB signaling pathway in macrophages. Immunopharmacol Immunotoxicol. 2020;42(1):37–47.
  • Kim JH, Lee DW, Jung MH, et al. Macrophage depletion ameliorates glycerol-induced acute kidney injury in mice. Nephron Exp Nephrol. 2014;128(1–2):21–29.
  • Belliere J, Casemayou A, Ducasse L, et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol. 2015;26(6):1363–1377.
  • Rubio-Navarro A, Carril M, Padro D, et al. CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics. 2016;6(6):896–914.
  • Okubo K, Kurosawa M, Kamiya M, et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med. 2018;24(2):232–238.
  • Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38:40–48.
  • VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): current wisdom and advancement as a potential drug target. J Med Chem. 2018;61(12):5093–5107.
  • Yamamoto T, Ono T, Ito T, et al. Hemoperfusion with a high-mobility group box 1 adsorption column can prevent the occurrence of hepatic ischemia-reperfusion injury in rats. Crit Care Med. 2010;38(3):879–885.
  • Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014;146(4):1097–1107.
  • Luan ZG, Zhang H, Yang PT, et al. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology. 2010;215(12):956–962.
  • Wu X, Mi Y, Yang H, et al. The activation of HMGB1 as a progression factor on inflammation response in normal human bronchial epithelial cells through RAGE/JNK/NF-κB pathway. Mol Cell Biochem. 2013;380(1–2):249–257.
  • Zhang BF, Wang PF, Cong YX, et al. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway. J Orthop Surg Res. 2017;12(1):110.
  • Creagh-Brown BC, Quinlan GJ, Evans TW, et al. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target? Intensive Care Med. 2010;36(10):1644–1656.
  • Matsumoto H, Matsumoto N, Shimazaki J, et al. Therapeutic effectiveness of anti-RAGE antibody administration in a rat model of crush injury. Sci Rep. 2017;7(1):12255.
  • Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):e00191.
  • Mishra PJ, Banerjee D. Activation and differentiation of mesenchymal stem cells. Methods Mol Biol. 2017;1554:201–209.
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317.
  • de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, et al. In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev. 2013;34(3):131–144.
  • Duffy MM, Griffin MD. Back from the brink: a mesenchymal stem cell infusion rescues kidney function in acute experimental rhabdomyolysis. Stem Cell Res Ther. 2014;5(5):109.
  • Geng Y, Zhang L, Fu B, et al. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Ther. 2014;5(3):80.
  • Ogaki S, Taguchi K, Watanabe H, et al. Carbon monoxide-bound red blood cell resuscitation ameliorates hepatic injury induced by massive hemorrhage and red blood cell resuscitation via hepatic cytochrome P450 protection in hemorrhagic shock rats. J Pharm Sci. 2014;103(7):2199–2206.
  • Taguchi K, Ogaki S, Nagasaki T, et al. Carbon monoxide rescues the developmental lethality of experimental rat models of rhabdomyolysis-induced acute kidney injury. J Pharmacol Exp Ther. 2020;372(3):355–365.
  • Murata I, Imanari M, Komiya M, et al. Icing treatment in rats with crush syndrome can improve survival through reduction of potassium concentration and mitochondrial function disorder effect. Exp Ther Med. 2019;19(1):777–785.