1,747
Views
2
CrossRef citations to date
0
Altmetric
Clinical Study

Critically ill, tubular injury, delayed early recovery: characteristics of acute kidney disease with renal oxalosis

, , , &
Pages 425-432 | Received 02 Oct 2020, Accepted 26 Jan 2021, Published online: 04 Mar 2021

References

  • Karaolanis G, Lionaki S, Moris D, et al. Secondary hyperoxaluria: a risk factor for kidney stone formation and renal failure in native kidneys and renal grafts. Transplant Rev. 2014;28(4):182–187.
  • Mulay SR, Shi C, Ma X, et al. Novel insights into crystal-induced kidney injury. Kidney Dis. 2018;4(2):49–57.
  • Zeng SH, Liu XQ. Oxalate nephropathy-new concept of metabolic nephropathy. Chin J Nephrol. 1998;3:193–196.
  • Liang SS, Zeng CH. Diabetic nephropathy complicated with acute calcium oxalate kidney injury. Chin J Nephrol Dial Transpl. 2016;25(2):191–194.
  • Tsai JL, Tsai SF. Calcium oxalate crystal related kidney injury in a patient receiving Roux-en Y hepaticojejunostomy due to gall bladder cancer. BMC Nephrol. 2017;18(1):106.
  • Ligon CB, Hummers LK, McMahan ZH. Oxalate nephropathy in systemic sclerosis: case series and review of the literature. Semin Arthritis Rheum. 2015;45(3):315–320.
  • Hashimoto S, Yamamoto R, Maoka T, et al. A case of chronic calcium oxalate nephropathy due to short bowel syndrome and cholecystectomy. Case Rep Nephrol Dial. 2018;8(2):147–154.
  • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184.
  • Chawla LS, Bellomo R, Bihorac A, et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13(4):241–257.
  • Racusen LC, Solez K, Colvin RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999;55(2):713–723.
  • Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8(4):753–760.
  • Getting JE, Gregoire JR, Phul A, et al. Oxalate nephropathy due to ‘juicing’: case report and review. Am J Med. 2013;126(9):768–772.
  • Buysschaert B, Aydin S, Morelle J, et al. Etiologies, clinical features, and outcome of oxalate nephropathy. Kidney Int Rep. 2020;5(9):1503–1509.
  • Salyer WR, Keren D. Oxalosis as a complication of chronic renal failure. Kidney Int. 1973;4(1):61–66.
  • Lumlertgul N, Siribamrungwong M, Jaber BL, et al. Secondary oxalate nephropathy: a systematic review. Kidney Int Rep. 2018;3(6):1363–1372.
  • Brzica H, Breljak D, Burckhardt BC, et al. Oxalate: from the environment to kidney stones. Arh Hig Rada Toksikol. 2013;64(4):609–630.
  • Markovich D, Aronson PS. Specificity and regulation of renal sulfate transporters. Annu Rev Physiol. 2007;69:361–375.
  • Kleta R. A key stone cop regulates oxalate homeostasis. Nat Genet. 2006;38(4):403–404.
  • Jiang H, Pokhrel G, Chen Y, et al. High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ. 2018;6:e5192.
  • Prenen JA, Dorhout Mees EJ, Boer P. Plasma oxalate concentration and oxalate distribution volume in patients with normal and decreased renal function. Eur J Clin Invest. 1985;15(1):45–49.
  • Perinpam M, Enders FT, Mara KC, et al. Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. Clin Biochem. 2017;50(18):1014–1019.
  • Cao Y, Liu W, Hui L, et al. Renal tubular injury induced by ischemia promotes the formation of calcium oxalate crystals in rats with hyperoxaluria. Urolithiasis. 2016;44(5):389–397.
  • Knauf F, Velazquez H, Pfann V, et al. Characterization of renal NaCl and oxalate transport in Slc26a6-/- mice. Am J Physiol Renal Physiol. 2019;316(1):F128–F133.
  • Amin R, Asplin J, Jung D, et al. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney Int. 2018;935(5):1098–1107.
  • Eisner BH, Porten SP, Bechis SK, et al. Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic stone formers. J Urol. 2010;183(6):2244–2248.
  • Efe O, Verma A, Waikar SS. Urinary oxalate as a potential mediator of kidney disease in diabetes mellitus and obesity. Curr Opin Nephrol Hypertens. 2019;28(4):316–320.
  • Ermer T, Eckardt KU, Aronson PS, et al. Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens. 2016;25(4):363–371.
  • Waikar SS, Srivastava A, Palsson R, et al. Association of urinary oxalate excretion with the risk of chronic kidney disease progression. JAMA Intern Med. 2019;179(4):542.