2,051
Views
0
CrossRef citations to date
0
Altmetric
Laboratory Study

Diacylglycerol kinase epsilon protects against renal ischemia/reperfusion injury in mice through Krüppel-like factor 15/klotho pathway

, , , , , , , , , , , & show all
Pages 902-913 | Received 30 Nov 2021, Accepted 11 May 2022, Published online: 26 May 2022

References

  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):902–1964.
  • Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 2019;96(2):291–301.
  • Levey AS, James MT. Acute kidney injury. Ann Intern Med. 2017;167(9):ITC66–ITC80.
  • Gonsalez SR, Cortes AL, Silva RCD, et al. Acute kidney injury overview: from basic findings to new prevention and therapy strategies. Pharmacol Ther. 2019;200:1–12.
  • Sim JA, Kim J, Yang D. Beyond lipid signaling: Pleiotropic effects of diacylglycerol kinases in cellular signaling. Int J Mol Sci. 2020;21(18):6861.
  • Massart J, Zierath JR. Role of diacylglycerol kinases in glucose and energy homeostasis. Trends Endocrinol Metab. 2019;30(9):603–617.
  • Noris M, Mele C, Remuzzi G. Podocyte dysfunction in atypical haemolytic uraemic syndrome. Nat Rev Nephrol. 2015;11(4):245–252.
  • Lemaire M, Fremeaux-Bacchi V, Schaefer F, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–536.
  • Ozaltin F, Li B, Rauhauser A, et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol. 2013;24(3):377–384.
  • Azukaitis K, Simkova E, Majid MA, et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase ε. J Am Soc Nephrol. 2017;28(10):3066–3075.
  • Quaggin SE. DGKE and atypical HUS. Nat Genet. 2013;45(5):475–476.
  • Jokiranta TS. HUS and atypical HUS. Blood. 2017;129(21):2847–2856.
  • Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells. Kidney Int. 2019;95(1):50–56.
  • Li Q, Wang Z, Zhang Y, et al. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling. Kidney Int. 2018;94(3):551–566.
  • Fang W, Wang Z, Li Q, et al. Gpr97 exacerbates AKI by mediating Sema3A signaling. J Am Soc Nephrol. 2018;29(5):1475–1489.
  • Wang Z, Zhou Z, Wei X, et al. Therapeutic potential of novel twin compounds containing tetramethylpyrazine and carnitine substructures in experimental ischemic stroke. Oxid Med Cell Longev. 2017;2017:7191856.
  • Guo J, Wang Z, Wu J, et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circ Res. 2019;124(10):1448–1461.
  • Fu Y, Sun Y, Wang M, et al. Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism. Cell Metab. 2020;32(6):1052–1062. e1058.
  • Su Z, Li Y, Lv H, et al. CLEC14A protects against podocyte injury in mice with adriamycin nephropathy. Faseb J. 2021;35(7):e21711.
  • Skarnes WC, Rosen B, West AP, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–342.
  • Bullen AL, Katz R, Jotwani V, et al. Biomarkers of kidney tubule health, CKD progression, and acute kidney injury in SPRINT (systolic blood pressure intervention trial) participants. Am J Kidney Dis. 2021;78(3):361–368.
  • Brocklebank V, Kumar G, Howie AJ, et al. Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int. 2020;97(6):1260–1274.
  • Ilsley MD, Gillinder KR, Magor GW, et al. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res. 2017;45(11):6572–6588.
  • Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine. 2019;40:743–750.
  • Li D, Liu X, Li C, et al. Role of promoting inflammation of Krüppel-like factor 6 in acute kidney injury. Ren Fail. 2020;42(1):693–703.
  • Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol. 2017;312(2):F259–F265.
  • Gu X, Mallipattu SK, Guo Y, et al. The loss of Krüppel-like factor 15 in Foxd1+ stromal cells exacerbates kidney fibrosis. Kidney Int. 2017;92(5):1178–1193.
  • Piret SE, Attallah AA, Gu X, et al. Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney Int. 2021;100(6):1250–1267.
  • Kuro OM. The klotho proteins in health and disease. Nat Rev Nephrol. 2019;15(1):27–44.
  • Hu MC, Shi M, Gillings N, et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017;91(5):1104–1114.
  • Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol. 2012;8(7):423–429.
  • Hu PP, Bao JF, Li A. Roles for fibroblast growth factor-23 and α-Klotho in acute kidney injury. Metabolism. 2021;116:154435.