1,431
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Exploratory metabolomic analysis based on UHPLC-Q-TOF-MS/MS to study hypoxia-reoxygenation energy metabolic alterations in HK-2 cells

, , , , , & show all
Article: 2186715 | Received 15 Nov 2022, Accepted 27 Feb 2023, Published online: 29 May 2023

References

  • Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Critical Care. 2013;17(1):204.
  • Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–625.
  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–1964.
  • Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–766.
  • Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629–646.
  • Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529–551.
  • Weiss RH, Kim K. Metabolomics in the study of kidney diseases. Nat Rev Nephrol. 2011;8(1):22–33.
  • Cuperlović-Culf M, Barnett DA, Culf AS, et al. Cell culture metabolomics: applications and future directions. Drug Discovery Today. 2010;15(15-16):610–621.
  • Yan M, Xu G. Current and future perspectives of functional metabolomics in disease studies-A review. Anal Chim Acta. 2018;1037:41–54.
  • Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dialysis Transplant. 2016;31(7):1062–1069.
  • van der Rijt S, Leemans JC, Florquin S, et al. Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol. 2022;18(9):588–603.
  • Tapiero H, Mathé G, Couvreur P, et al. II. Glutamine and glutamate. Biomed Pharmacother. 2002;56(9):446–457.
  • Nielsen TT, Støttrup NB, Løfgren B, et al. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovascular Res. 2011;91(3):382–391.
  • Pereira PR, Carrageta DF, Oliveira PF, et al. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med Res Rev. 2022;42(4):1518–1544.
  • Brosnan ME, Brosnan JT. Renal arginine metabolism. J Nutr. 2004;134(10 Suppl):2791S-2795S. discussion 2796S-2797S.
  • Prins HA, Nijveldt RJ, Gasselt DV, et al. The flux of arginine after ischemia-reperfusion in the rat kidney. Kidney Internat. 2002;62(1):86–93.
  • Piret SE, Guo Y, Attallah AA, et al. Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc Natl Acad Sci USA. 2021;118(23):e2024414118.
  • Okada A, Nangaku M, Jao TM, et al. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation. Sci Rep. 2017;7(1):11168.
  • Delwing-Dal Magro D, Roecker R, Junges GM, et al. Protective effect of green tea extract against proline-induced oxidative damage in the rat kidney. Biomed Pharmacother. 2016;83:1422–1427.
  • Nepomuceno G, Junho CVC, Carneiro-Ramos MS, et al. Tyrosine and tryptophan vibrational bands as markers of kidney injury: a renocardiac syndrome induced by renal ischemia and reperfusion study. Sci Rep. 2021;11(1):15036.
  • Marx D, Metzger J, Pejchinovski M, et al. Proteomics and metabolomics for AKI diagnosis. Sem Nephrol. 2018;38(1):63–87.
  • Rao S, Walters KB, Wilson L, et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am J Physiol Renal Physiol. 2016;310(10):F1136–1147.
  • Johnson AC, Stahl A, Zager RA. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int. 2005;67(6):2196–2209.
  • Chung KW, Lee EK, Lee MK, et al. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol: JASN. 2018;29(4):1223–1237.
  • Rodríguez-Iturbe B, García García G. The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron. Clin Pract. 2010;116(2):c81–88.
  • Chapkin RS, Kim W, Lupton JR, et al. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2-3):187–191.
  • Lv ZT, Zhang JM, Zhu WT. Omega-3 polyunsaturated fatty acid supplementation for reducing muscle soreness after eccentric exercise: a systematic review and Meta-Analysis of randomized controlled trials. Biomed Res Int. 2020;2020:8062017.
  • Rund KM, Peng S, Greite R, et al. Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function. Prostaglandins Other Lipid Mediat. 2020;146:106386.
  • Jang HS, Noh MR, Kim J, et al. Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases. Front Med. 2020;7:65.
  • Rabb H, Griffin MD, McKay DB, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol. 2016;27(2):371–379.
  • Zager RA, Johnson AC, Becker K. Renal cortical pyruvate depletion during AKI. J Am Soc Nephrol. 2014;25(5):998–1012.
  • Jouret F, Leenders J, Poma L, et al. Nuclear magnetic resonance metabolomic profiling of mouse kidney, urine and serum following renal ischemia/reperfusion injury. PLoS One. 2016;11(9):e0163021.
  • Zhu Z, Hu J, Chen Z, et al. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabol Clin Exp. 2022;131:155194.
  • Ji R, Chen W, Wang Y, et al. The arburg effect promotes mitochondrial injury regulated by uncoupling protein-2 in septic acute kidney injury. Shock. 2021;55(5):640–648.
  • Faivre A, Verissimo T, Auwerx H, et al. Tubular cell glucose metabolism shift during acute and chronic injuries. Front Med. 2021;8:742072.
  • Erpicum P, Rowart P, Defraigne JO, et al. What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol. 2018;315(6):F1714–f1719.
  • Lan R, Geng H, Singha PK, et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol. 2016;27(11):3356–3367.
  • Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.
  • Gerhardt LMS, Liu J, Koppitch K, et al. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc Natl Acad Sci USA. 2021;118(27):e2026684118.
  • Simon N, Hertig A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med. 2015;2:52.
  • Wilflingseder J, Willi M, Lee HK, et al. Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury. Nat Commun. 2020;11(1):3383.
  • Bienholz A, Petrat F, Wenzel P, et al. Adverse effects of α-ketoglutarate/malate in a rat model of acute kidney injury. Am J Physiol. Renal Physiol. 2012;303(1):F56–63.
  • Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435.
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.
  • Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig. 2013;123(9):3678–3684.
  • Chesney RW, Han X, Patters AB. Taurine and the renal system. J Biomed Sci. 2010;1(Suppl 1):S4):17–Suppl.
  • Izquierdo-Garcia JL, Nin N, Cardinal-Fernandez P, et al. Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury. Am J Physiol Renal Physiol. 2019;316(1):F54–f62.
  • Tyrakis PA, Palazon A, Macias D, et al. S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature. 2016;540(7632):236–241.
  • Cienfuegos-Pecina E, Ibarra-Rivera TR, Saucedo AL, et al. Effect of sodium (S)-2-hydroxyglutarate in male, and succinic acid in female wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway. PeerJ. 2020;8:e9438.
  • Zhou HL, Zhang R, Anand P, et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature. 2019;565(7737):96–100.
  • Smith JA, Stallons LJ, Schnellmann RG. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/akt signaling pathway in endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol. 2014;307(4):F435–444.
  • Scantlebery AM, Tammaro A, Mills JD, et al. The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia-reperfusion injury. J Pathol. 2021;253(4):404–414.